高阶奇偶自动机

Paul-André Melliès
{"title":"高阶奇偶自动机","authors":"Paul-André Melliès","doi":"10.1109/LICS.2017.8005077","DOIUrl":null,"url":null,"abstract":"We introduce a notion of higher-order parity automaton which extends to infinitary simply-typed λ-terms the traditional notion of parity tree automaton on infinitary ranked trees. Our main result is that the acceptance of an infinitary λ-term by a higher-order parity automaton A is decidable, whenever the infinitary λ-term is generated by a finite and simply-typed λY-term. The decidability theorem is established by combining ideas coming from linear logic, from denotational semantics and from infinitary rewriting theory.","PeriodicalId":313950,"journal":{"name":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Higher-order parity automata\",\"authors\":\"Paul-André Melliès\",\"doi\":\"10.1109/LICS.2017.8005077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a notion of higher-order parity automaton which extends to infinitary simply-typed λ-terms the traditional notion of parity tree automaton on infinitary ranked trees. Our main result is that the acceptance of an infinitary λ-term by a higher-order parity automaton A is decidable, whenever the infinitary λ-term is generated by a finite and simply-typed λY-term. The decidability theorem is established by combining ideas coming from linear logic, from denotational semantics and from infinitary rewriting theory.\",\"PeriodicalId\":313950,\"journal\":{\"name\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LICS.2017.8005077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS.2017.8005077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

引入了高阶奇偶自动机的概念,将传统的秩无限大树奇偶自动机的概念推广到无穷简型λ项。我们的主要结果是,当无限λ项由有限的简型λ y项生成时,高阶奇偶自动机a接受无穷大λ项是可判定的。可判据定理是由线性逻辑、指称语义学和无穷改写理论的思想相结合而建立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Higher-order parity automata
We introduce a notion of higher-order parity automaton which extends to infinitary simply-typed λ-terms the traditional notion of parity tree automaton on infinitary ranked trees. Our main result is that the acceptance of an infinitary λ-term by a higher-order parity automaton A is decidable, whenever the infinitary λ-term is generated by a finite and simply-typed λY-term. The decidability theorem is established by combining ideas coming from linear logic, from denotational semantics and from infinitary rewriting theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信