和积定理在有限域中的应用

A. Wigderson
{"title":"和积定理在有限域中的应用","authors":"A. Wigderson","doi":"10.1109/CCC.2006.9","DOIUrl":null,"url":null,"abstract":"Summary form only given. About two years ago Bourgain, Katz and Tao (2004) proved the following theorem, essentially stating that in every finite field, a set which does not grow much when we add all pairs of elements, and when we multiply all pairs of elements, must be very close to a subfield. Theorem 1: (Bourgain et al., 2004) For every epsi > 0 there exists a delta > 0 such that the following holds. Let F be any field with no subfield of size ges |F|epsi. For every set A sube F, with |F|epsi < |A| < |F|1 - epsi, either the sumset |A + A| > |A|1 + delta or the product set |A times A| > |A|1 + delta. This theorem revealed its fundamental nature quickly. Shortly afterwards it has found many diverse applications, including in number theory, group theory, combinatorial geometry, and the explicit construction of extractors and Ramsey graphs, mostly described in the references below. In my talk I plan to explain some of the applications, as well as to sketch the main ideas of the proof of the sum-product theorem","PeriodicalId":325664,"journal":{"name":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applications of the sum-product theorem in finite fields\",\"authors\":\"A. Wigderson\",\"doi\":\"10.1109/CCC.2006.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. About two years ago Bourgain, Katz and Tao (2004) proved the following theorem, essentially stating that in every finite field, a set which does not grow much when we add all pairs of elements, and when we multiply all pairs of elements, must be very close to a subfield. Theorem 1: (Bourgain et al., 2004) For every epsi > 0 there exists a delta > 0 such that the following holds. Let F be any field with no subfield of size ges |F|epsi. For every set A sube F, with |F|epsi < |A| < |F|1 - epsi, either the sumset |A + A| > |A|1 + delta or the product set |A times A| > |A|1 + delta. This theorem revealed its fundamental nature quickly. Shortly afterwards it has found many diverse applications, including in number theory, group theory, combinatorial geometry, and the explicit construction of extractors and Ramsey graphs, mostly described in the references below. In my talk I plan to explain some of the applications, as well as to sketch the main ideas of the proof of the sum-product theorem\",\"PeriodicalId\":325664,\"journal\":{\"name\":\"21st Annual IEEE Conference on Computational Complexity (CCC'06)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"21st Annual IEEE Conference on Computational Complexity (CCC'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCC.2006.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"21st Annual IEEE Conference on Computational Complexity (CCC'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCC.2006.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。大约两年前,Bourgain, Katz和Tao(2004)证明了以下定理,本质上是说,在每个有限域中,当我们添加所有对元素时,当我们乘以所有对元素时,一个集合不会增长太多,必须非常接近于一个子域。定理1:(Bourgain et al., 2004)对于每一个epsi > 0,存在一个> 0的delta,使得下列成立。设F为没有大小为ges |F|epsi的子域的任意域。对于每一个集合A (F) F,当有|F|epsi < |A| < |F|1 - epsi时,要么是sumset |A + A| > |A|1 +,要么是积集|A乘以A| > |A|1 +。这个定理很快揭示了它的基本性质。不久之后,它发现了许多不同的应用,包括数论,群论,组合几何,以及提取器和拉姆齐图的显式构造,主要在下面的参考文献中描述。在我的演讲中,我计划解释和积定理的一些应用,并概述和积定理证明的主要思想
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of the sum-product theorem in finite fields
Summary form only given. About two years ago Bourgain, Katz and Tao (2004) proved the following theorem, essentially stating that in every finite field, a set which does not grow much when we add all pairs of elements, and when we multiply all pairs of elements, must be very close to a subfield. Theorem 1: (Bourgain et al., 2004) For every epsi > 0 there exists a delta > 0 such that the following holds. Let F be any field with no subfield of size ges |F|epsi. For every set A sube F, with |F|epsi < |A| < |F|1 - epsi, either the sumset |A + A| > |A|1 + delta or the product set |A times A| > |A|1 + delta. This theorem revealed its fundamental nature quickly. Shortly afterwards it has found many diverse applications, including in number theory, group theory, combinatorial geometry, and the explicit construction of extractors and Ramsey graphs, mostly described in the references below. In my talk I plan to explain some of the applications, as well as to sketch the main ideas of the proof of the sum-product theorem
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信