利用多分辨率调制滤波耳蜗图学习情感信息用于表达性语音合成

Kaili Zhang, M. Unoki
{"title":"利用多分辨率调制滤波耳蜗图学习情感信息用于表达性语音合成","authors":"Kaili Zhang, M. Unoki","doi":"10.23919/APSIPAASC55919.2022.9979810","DOIUrl":null,"url":null,"abstract":"Emotion information plays an important role in improving the expressiveness of synthesized speech. At present, researchers mainly use style or emotion encoder to extract emotion information from mel-spectrogram extracted by mel fil-terbank. The mel filterbank does not consider the masking effect in the human auditory system, which results in mel-spectrogram not modeling complete auditory information. The multi-resolution modulation-filtered cochleagram (MMCG) simulates the auditory signal processing mechanism and reflects the function of the human auditory system. It can extract high-level auditory representations and significantly improve the emotion recognition performance. Therefore, we propose extracting emotion information from MMCG rather than mel-spectrogram to improve the expressiveness of synthesized speech. We propose three different kinds of MMCG encoders based on the characteristics of MMCG. Subjective and objective experiments demonstrate that using MMCG as an input feature can not only improve the naturalness and style transfer performance of synthesized speech but also reduce the fundamental frequency error. Our proposed MMCG encoders can extract more complete and rich emotion information from MMCG to further improve the expressiveness of synthesized speech.","PeriodicalId":382967,"journal":{"name":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Emotion Information for Expressive Speech Synthesis Using Multi-resolution Modulation-filtered Cochleagram\",\"authors\":\"Kaili Zhang, M. Unoki\",\"doi\":\"10.23919/APSIPAASC55919.2022.9979810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion information plays an important role in improving the expressiveness of synthesized speech. At present, researchers mainly use style or emotion encoder to extract emotion information from mel-spectrogram extracted by mel fil-terbank. The mel filterbank does not consider the masking effect in the human auditory system, which results in mel-spectrogram not modeling complete auditory information. The multi-resolution modulation-filtered cochleagram (MMCG) simulates the auditory signal processing mechanism and reflects the function of the human auditory system. It can extract high-level auditory representations and significantly improve the emotion recognition performance. Therefore, we propose extracting emotion information from MMCG rather than mel-spectrogram to improve the expressiveness of synthesized speech. We propose three different kinds of MMCG encoders based on the characteristics of MMCG. Subjective and objective experiments demonstrate that using MMCG as an input feature can not only improve the naturalness and style transfer performance of synthesized speech but also reduce the fundamental frequency error. Our proposed MMCG encoders can extract more complete and rich emotion information from MMCG to further improve the expressiveness of synthesized speech.\",\"PeriodicalId\":382967,\"journal\":{\"name\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/APSIPAASC55919.2022.9979810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/APSIPAASC55919.2022.9979810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

情感信息对提高合成语音的表达能力起着重要作用。目前,研究人员主要使用风格或情绪编码器从mel- filterbank提取的mel-谱图中提取情绪信息。由于mel滤波器组没有考虑人类听觉系统的掩蔽效应,导致mel谱图不能模拟完整的听觉信息。多分辨率调制滤波耳蜗图(MMCG)模拟了听觉信号的处理机制,反映了人类听觉系统的功能。它可以提取高水平的听觉表征,显著提高情绪识别性能。因此,我们建议从MMCG中提取情感信息,以提高合成语音的表达能力。根据MMCG的特点,提出了三种不同的MMCG编码器。主观和客观实验表明,使用MMCG作为输入特征不仅可以提高合成语音的自然度和风格迁移性能,还可以减小基频误差。我们提出的MMCG编码器可以从MMCG中提取更完整、更丰富的情感信息,进一步提高合成语音的表现力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Emotion Information for Expressive Speech Synthesis Using Multi-resolution Modulation-filtered Cochleagram
Emotion information plays an important role in improving the expressiveness of synthesized speech. At present, researchers mainly use style or emotion encoder to extract emotion information from mel-spectrogram extracted by mel fil-terbank. The mel filterbank does not consider the masking effect in the human auditory system, which results in mel-spectrogram not modeling complete auditory information. The multi-resolution modulation-filtered cochleagram (MMCG) simulates the auditory signal processing mechanism and reflects the function of the human auditory system. It can extract high-level auditory representations and significantly improve the emotion recognition performance. Therefore, we propose extracting emotion information from MMCG rather than mel-spectrogram to improve the expressiveness of synthesized speech. We propose three different kinds of MMCG encoders based on the characteristics of MMCG. Subjective and objective experiments demonstrate that using MMCG as an input feature can not only improve the naturalness and style transfer performance of synthesized speech but also reduce the fundamental frequency error. Our proposed MMCG encoders can extract more complete and rich emotion information from MMCG to further improve the expressiveness of synthesized speech.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信