一种映射匹配算法的参数调整方法

Carola A. Blazquez, Jana Ries, P. Miranda
{"title":"一种映射匹配算法的参数调整方法","authors":"Carola A. Blazquez, Jana Ries, P. Miranda","doi":"10.1109/ICVES.2017.7991906","DOIUrl":null,"url":null,"abstract":"Map Matching Algorithms (MMA) are developed to solve spatial ambiguities that arise in the process of assigning GPS measurements onto a digital roadway network. There is a lack of systematic parameter tuning approaches for optimizing the MMA performance. Thus, a novel integrated framework is proposed for a systematic calibration of the parameters of a post-processing MMA. The calibration approach consists of an Instance-specific Parameter Tuning Strategy (IPTS) that employs Fuzzy Logic principles. The proposed fuzzy IPTS tool determines the best algorithm parameter values by using instance-specific information a priori to the execution of the MMA. A preliminary prototype of an IPTS system is designed based on real-world data, which identifies the explanatory variables that condition the MMA performance. The implementation of the fuzzy IPTS tool on real-word data yields an enhanced MMA performance in the solution quality and computational time compared to the results of the execution of the MMA with constant algorithm settings.","PeriodicalId":303389,"journal":{"name":"2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Towards a parameter tuning approach for a map-matching algorithm\",\"authors\":\"Carola A. Blazquez, Jana Ries, P. Miranda\",\"doi\":\"10.1109/ICVES.2017.7991906\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Map Matching Algorithms (MMA) are developed to solve spatial ambiguities that arise in the process of assigning GPS measurements onto a digital roadway network. There is a lack of systematic parameter tuning approaches for optimizing the MMA performance. Thus, a novel integrated framework is proposed for a systematic calibration of the parameters of a post-processing MMA. The calibration approach consists of an Instance-specific Parameter Tuning Strategy (IPTS) that employs Fuzzy Logic principles. The proposed fuzzy IPTS tool determines the best algorithm parameter values by using instance-specific information a priori to the execution of the MMA. A preliminary prototype of an IPTS system is designed based on real-world data, which identifies the explanatory variables that condition the MMA performance. The implementation of the fuzzy IPTS tool on real-word data yields an enhanced MMA performance in the solution quality and computational time compared to the results of the execution of the MMA with constant algorithm settings.\",\"PeriodicalId\":303389,\"journal\":{\"name\":\"2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICVES.2017.7991906\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2017.7991906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

地图匹配算法(MMA)是为了解决在将GPS测量值分配到数字道路网络过程中出现的空间模糊性而开发的。目前还缺乏优化MMA性能的系统参数调优方法。因此,提出了一种新的集成框架,用于系统校准后处理MMA的参数。校准方法由实例特定参数调优策略(IPTS)组成,该策略采用模糊逻辑原理。提出的模糊IPTS工具通过使用实例特定信息先验地确定最佳算法参数值。基于实际数据设计了IPTS系统的初步原型,确定了影响MMA性能的解释变量。与使用固定算法设置执行MMA的结果相比,在实时数据上实现模糊IPTS工具在解决方案质量和计算时间方面产生了增强的MMA性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards a parameter tuning approach for a map-matching algorithm
Map Matching Algorithms (MMA) are developed to solve spatial ambiguities that arise in the process of assigning GPS measurements onto a digital roadway network. There is a lack of systematic parameter tuning approaches for optimizing the MMA performance. Thus, a novel integrated framework is proposed for a systematic calibration of the parameters of a post-processing MMA. The calibration approach consists of an Instance-specific Parameter Tuning Strategy (IPTS) that employs Fuzzy Logic principles. The proposed fuzzy IPTS tool determines the best algorithm parameter values by using instance-specific information a priori to the execution of the MMA. A preliminary prototype of an IPTS system is designed based on real-world data, which identifies the explanatory variables that condition the MMA performance. The implementation of the fuzzy IPTS tool on real-word data yields an enhanced MMA performance in the solution quality and computational time compared to the results of the execution of the MMA with constant algorithm settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信