加比都林码的伽罗瓦壳体尺寸

H. Islam, Anna-Lena Horlemann
{"title":"加比都林码的伽罗瓦壳体尺寸","authors":"H. Islam, Anna-Lena Horlemann","doi":"10.1109/ITW55543.2023.10161658","DOIUrl":null,"url":null,"abstract":"For a prime power q, an integer m and 0 ≤ e ≤ m − 1 we study the e-Galois hull dimension of Gabidulin codes Gk(α) of length m and dimension k over ${\\mathbb{F}_{{q^m}}}$. Using a self-dual basis α of ${\\mathbb{F}_{{q^m}}}$ over ${\\mathbb{F}_q}$, we first explicitly compute the hull dimension of Gk(α). Then a necessary and sufficient condition of Gk(α) to be linear complementary dual (LCD), self-orthogonal and self-dual will be provided. We prove the existence of e-Galois (where $e = \\frac{m}{2}$) self-dual Gabidulin codes of length m for even q, which is in contrast to the known fact that Euclidean self-dual Gabidulin codes do not exist for even q. As an application, we construct two classes of MDS entangled-assisted quantum error-correcting codes (MDS EAQECCs) whose parameters have more flexibility compared to known codes in this context.","PeriodicalId":439800,"journal":{"name":"2023 IEEE Information Theory Workshop (ITW)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galois Hull Dimensions of Gabidulin Codes\",\"authors\":\"H. Islam, Anna-Lena Horlemann\",\"doi\":\"10.1109/ITW55543.2023.10161658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For a prime power q, an integer m and 0 ≤ e ≤ m − 1 we study the e-Galois hull dimension of Gabidulin codes Gk(α) of length m and dimension k over ${\\\\mathbb{F}_{{q^m}}}$. Using a self-dual basis α of ${\\\\mathbb{F}_{{q^m}}}$ over ${\\\\mathbb{F}_q}$, we first explicitly compute the hull dimension of Gk(α). Then a necessary and sufficient condition of Gk(α) to be linear complementary dual (LCD), self-orthogonal and self-dual will be provided. We prove the existence of e-Galois (where $e = \\\\frac{m}{2}$) self-dual Gabidulin codes of length m for even q, which is in contrast to the known fact that Euclidean self-dual Gabidulin codes do not exist for even q. As an application, we construct two classes of MDS entangled-assisted quantum error-correcting codes (MDS EAQECCs) whose parameters have more flexibility compared to known codes in this context.\",\"PeriodicalId\":439800,\"journal\":{\"name\":\"2023 IEEE Information Theory Workshop (ITW)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW55543.2023.10161658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW55543.2023.10161658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于素数幂q,整数m且0≤e≤m−1,我们研究了长度为m,维数为k / ${\mathbb{F}_{{q^m}}}$的Gabidulin码Gk(α)的e-伽罗瓦壳维数。利用${\mathbb{F}_{{q^m}} $ / ${\mathbb{F}_q}$的自对偶基α,我们首先显式地计算了Gk(α)的船体维数。然后给出了Gk(α)是线性互补对偶、自正交和自对偶的充分必要条件。我们证明了偶q存在长度为m的e-伽罗瓦(其中$e = \frac{m}{2}$)自对偶Gabidulin码,这与已知偶q不存在欧几里得自对偶Gabidulin码的事实形成了对比。作为应用,我们构造了两类MDS纠缠辅助量子纠错码(MDS EAQECCs),它们的参数比已知码具有更大的灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Galois Hull Dimensions of Gabidulin Codes
For a prime power q, an integer m and 0 ≤ e ≤ m − 1 we study the e-Galois hull dimension of Gabidulin codes Gk(α) of length m and dimension k over ${\mathbb{F}_{{q^m}}}$. Using a self-dual basis α of ${\mathbb{F}_{{q^m}}}$ over ${\mathbb{F}_q}$, we first explicitly compute the hull dimension of Gk(α). Then a necessary and sufficient condition of Gk(α) to be linear complementary dual (LCD), self-orthogonal and self-dual will be provided. We prove the existence of e-Galois (where $e = \frac{m}{2}$) self-dual Gabidulin codes of length m for even q, which is in contrast to the known fact that Euclidean self-dual Gabidulin codes do not exist for even q. As an application, we construct two classes of MDS entangled-assisted quantum error-correcting codes (MDS EAQECCs) whose parameters have more flexibility compared to known codes in this context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信