基于遗传算法的电力系统经济调度方法

H. Ma, A. El-Keib, Robert E. Smith
{"title":"基于遗传算法的电力系统经济调度方法","authors":"H. Ma, A. El-Keib, Robert E. Smith","doi":"10.1109/SECON.1994.324300","DOIUrl":null,"url":null,"abstract":"In view of the Clean Air Act (CAA) of 1990, the economic dispatch problem considering the compensating generation plan provided in the Act is nonlinear, ill-structured and multimodal. This paper presents a genetic algorithm (GA) based approach to solve this problem. Test results show that the genetic algorithm-based approach produces significantly better solutions compared against those obtained using the standard economic dispatch approach. It also proves the robustness of this algorithm in solving this type of optimization problem.<<ETX>>","PeriodicalId":119615,"journal":{"name":"Proceedings of SOUTHEASTCON '94","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"A genetic algorithm-based approach to economic dispatch of power systems\",\"authors\":\"H. Ma, A. El-Keib, Robert E. Smith\",\"doi\":\"10.1109/SECON.1994.324300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In view of the Clean Air Act (CAA) of 1990, the economic dispatch problem considering the compensating generation plan provided in the Act is nonlinear, ill-structured and multimodal. This paper presents a genetic algorithm (GA) based approach to solve this problem. Test results show that the genetic algorithm-based approach produces significantly better solutions compared against those obtained using the standard economic dispatch approach. It also proves the robustness of this algorithm in solving this type of optimization problem.<<ETX>>\",\"PeriodicalId\":119615,\"journal\":{\"name\":\"Proceedings of SOUTHEASTCON '94\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SOUTHEASTCON '94\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SECON.1994.324300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1994.324300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

鉴于1990年的《清洁空气法》(Clean Air Act, CAA),考虑该法案规定的补偿发电计划的经济调度问题是非线性的、结构不良的和多式联运的。本文提出了一种基于遗传算法的方法来解决这一问题。测试结果表明,与采用标准经济调度方法相比,基于遗传算法的方法产生的解明显更好。验证了该算法在求解该类优化问题时的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A genetic algorithm-based approach to economic dispatch of power systems
In view of the Clean Air Act (CAA) of 1990, the economic dispatch problem considering the compensating generation plan provided in the Act is nonlinear, ill-structured and multimodal. This paper presents a genetic algorithm (GA) based approach to solve this problem. Test results show that the genetic algorithm-based approach produces significantly better solutions compared against those obtained using the standard economic dispatch approach. It also proves the robustness of this algorithm in solving this type of optimization problem.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信