协同神经模糊特征选择与脑肿瘤分类

Subhashis Banerjee, S. Mitra, B. U. Shankar
{"title":"协同神经模糊特征选择与脑肿瘤分类","authors":"Subhashis Banerjee, S. Mitra, B. U. Shankar","doi":"10.1109/FUZZ-IEEE.2017.8015514","DOIUrl":null,"url":null,"abstract":"Brain tumors constitute one of the deadliest forms of cancers, with a high mortality rate. Of these, Glioblastoma multiforme (GBM) remains the most common and lethal primary brain tumor in adults. Tumor biopsy being challenging for brain tumor patients, noninvasive techniques like imaging play an important role in the process of brain cancer detection, diagnosis and prognosis; particularly using Magnetic Resonance Imaging (MRI). Therefore, development of advanced extraction and selection strategies of quantitative MRI features become necessary for noninvasively predicting and grading the tumors. In this paper we extract 56 three-dimensional quantitative MRI features, related to tumor image intensities, shape and texture, from 254 brain tumor patients. An adaptive neuro-fuzzy classifier based on linguistic hedges (ANFC-LH) is developed to simultaneously select significant features and predict the tumor grade. ANFC-LH achieves a significantly higher testing accuracy (85.83%) as compared to existing standard classifiers.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Synergetic neuro-fuzzy feature selection and classification of brain tumors\",\"authors\":\"Subhashis Banerjee, S. Mitra, B. U. Shankar\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain tumors constitute one of the deadliest forms of cancers, with a high mortality rate. Of these, Glioblastoma multiforme (GBM) remains the most common and lethal primary brain tumor in adults. Tumor biopsy being challenging for brain tumor patients, noninvasive techniques like imaging play an important role in the process of brain cancer detection, diagnosis and prognosis; particularly using Magnetic Resonance Imaging (MRI). Therefore, development of advanced extraction and selection strategies of quantitative MRI features become necessary for noninvasively predicting and grading the tumors. In this paper we extract 56 three-dimensional quantitative MRI features, related to tumor image intensities, shape and texture, from 254 brain tumor patients. An adaptive neuro-fuzzy classifier based on linguistic hedges (ANFC-LH) is developed to simultaneously select significant features and predict the tumor grade. ANFC-LH achieves a significantly higher testing accuracy (85.83%) as compared to existing standard classifiers.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

脑瘤是最致命的癌症之一,死亡率很高。其中,多形性胶质母细胞瘤(GBM)仍然是成人中最常见和最致命的原发性脑肿瘤。肿瘤活检是脑肿瘤患者的一项挑战,影像学等无创技术在脑癌的发现、诊断和预后过程中发挥着重要作用;特别是使用磁共振成像(MRI)。因此,发展先进的定量MRI特征提取和选择策略对于无创预测和分级肿瘤是必要的。本文从254例脑肿瘤患者中提取了56个与肿瘤图像强度、形状和纹理相关的三维定量MRI特征。提出了一种基于语言模糊限制的自适应神经模糊分类器(ANFC-LH),用于同时选择显著特征和预测肿瘤级别。与现有的标准分类器相比,ANFC-LH实现了更高的测试准确率(85.83%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synergetic neuro-fuzzy feature selection and classification of brain tumors
Brain tumors constitute one of the deadliest forms of cancers, with a high mortality rate. Of these, Glioblastoma multiforme (GBM) remains the most common and lethal primary brain tumor in adults. Tumor biopsy being challenging for brain tumor patients, noninvasive techniques like imaging play an important role in the process of brain cancer detection, diagnosis and prognosis; particularly using Magnetic Resonance Imaging (MRI). Therefore, development of advanced extraction and selection strategies of quantitative MRI features become necessary for noninvasively predicting and grading the tumors. In this paper we extract 56 three-dimensional quantitative MRI features, related to tumor image intensities, shape and texture, from 254 brain tumor patients. An adaptive neuro-fuzzy classifier based on linguistic hedges (ANFC-LH) is developed to simultaneously select significant features and predict the tumor grade. ANFC-LH achieves a significantly higher testing accuracy (85.83%) as compared to existing standard classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信