最佳张量二部图学习

Haizhou Yang, Wenhui Zhao, Quanxue Gao, Xiangdong Zhang, Wei Xia
{"title":"最佳张量二部图学习","authors":"Haizhou Yang, Wenhui Zhao, Quanxue Gao, Xiangdong Zhang, Wei Xia","doi":"10.1145/3552487.3556441","DOIUrl":null,"url":null,"abstract":"are concerned in this paper with a multi-view clustering framework based on bipartite graphs. And we propose an efficient multiview clustering method, Optimal Tensor Bipartite Graph Learning for multi-view clustering (OTBGL). Our model is a novel tensorized bipartite graph based multi-view clustering method with low tensorrank constraint. Firstly, to remarkably reduce the computational complexity, we leverage the bipartite graphs of different views instead of full similarity graphs of the corresponding views. Secondly, we measure the similarity between bipartite graphs of different views by minimizing the tensor Schatten p-norm as a tighter tensor rank approximation and explore the spatial low-rank structure embedded in intra-view graphs by minimizing the l1,2-norm of learned graphs. Thirdly, we provide an efficient algorithm suitable for processing large-scale data. Extensive experimental results on six benchmark datasets indicate our proposed OTBGL is superior to the state-of-the-art methods.","PeriodicalId":274055,"journal":{"name":"Proceedings of the 1st International Workshop on Methodologies for Multimedia","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Tensor Bipartite Graph Learning\",\"authors\":\"Haizhou Yang, Wenhui Zhao, Quanxue Gao, Xiangdong Zhang, Wei Xia\",\"doi\":\"10.1145/3552487.3556441\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"are concerned in this paper with a multi-view clustering framework based on bipartite graphs. And we propose an efficient multiview clustering method, Optimal Tensor Bipartite Graph Learning for multi-view clustering (OTBGL). Our model is a novel tensorized bipartite graph based multi-view clustering method with low tensorrank constraint. Firstly, to remarkably reduce the computational complexity, we leverage the bipartite graphs of different views instead of full similarity graphs of the corresponding views. Secondly, we measure the similarity between bipartite graphs of different views by minimizing the tensor Schatten p-norm as a tighter tensor rank approximation and explore the spatial low-rank structure embedded in intra-view graphs by minimizing the l1,2-norm of learned graphs. Thirdly, we provide an efficient algorithm suitable for processing large-scale data. Extensive experimental results on six benchmark datasets indicate our proposed OTBGL is superior to the state-of-the-art methods.\",\"PeriodicalId\":274055,\"journal\":{\"name\":\"Proceedings of the 1st International Workshop on Methodologies for Multimedia\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1st International Workshop on Methodologies for Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3552487.3556441\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st International Workshop on Methodologies for Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3552487.3556441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一个基于二部图的多视图聚类框架。提出了一种高效的多视图聚类方法——面向多视图聚类的最优张量二部图学习(OTBGL)。我们的模型是一种新颖的低张量约束的基于张量二部图的多视图聚类方法。首先,为了显著降低计算复杂度,我们利用了不同视图的二部图而不是相应视图的全相似图。其次,我们通过最小化张量Schatten p-范数作为更严格的张量秩近似来度量不同视图的二部图之间的相似性,并通过最小化学习图的l1,2-范数来探索嵌入在视图内图中的空间低秩结构。第三,提出了一种适用于大规模数据处理的高效算法。在六个基准数据集上的大量实验结果表明,我们提出的OTBGL优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Tensor Bipartite Graph Learning
are concerned in this paper with a multi-view clustering framework based on bipartite graphs. And we propose an efficient multiview clustering method, Optimal Tensor Bipartite Graph Learning for multi-view clustering (OTBGL). Our model is a novel tensorized bipartite graph based multi-view clustering method with low tensorrank constraint. Firstly, to remarkably reduce the computational complexity, we leverage the bipartite graphs of different views instead of full similarity graphs of the corresponding views. Secondly, we measure the similarity between bipartite graphs of different views by minimizing the tensor Schatten p-norm as a tighter tensor rank approximation and explore the spatial low-rank structure embedded in intra-view graphs by minimizing the l1,2-norm of learned graphs. Thirdly, we provide an efficient algorithm suitable for processing large-scale data. Extensive experimental results on six benchmark datasets indicate our proposed OTBGL is superior to the state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信