一种基于人工蜂群算法的数值积分方法

Juan Xie, Jianfeng Qiu
{"title":"一种基于人工蜂群算法的数值积分方法","authors":"Juan Xie, Jianfeng Qiu","doi":"10.1109/ICCECT.2012.118","DOIUrl":null,"url":null,"abstract":"An new swarm intelligence algorithm based on the behavior of honeybee swarms has been proposed for some years, namely, Artificial Bee Colony(ABC). In this work, ABC is used for optimizing a set of split in a given integration interval by simulating the foraging activities of bees and reflecting the changing trends of the integrand. At the same time, this work also compares the performance of ABC algorithm with that of Trapezoidal, Simpson, Differential Evolution(DE), particle swarm optimization(PSO) for numerical integration. The simulation results show that the mentioned algorithm for numerical integration outperforms the other algorithm.","PeriodicalId":153613,"journal":{"name":"2012 International Conference on Control Engineering and Communication Technology","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Numerical Integration Method Based on Artificial Bee Colony Algorithm\",\"authors\":\"Juan Xie, Jianfeng Qiu\",\"doi\":\"10.1109/ICCECT.2012.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An new swarm intelligence algorithm based on the behavior of honeybee swarms has been proposed for some years, namely, Artificial Bee Colony(ABC). In this work, ABC is used for optimizing a set of split in a given integration interval by simulating the foraging activities of bees and reflecting the changing trends of the integrand. At the same time, this work also compares the performance of ABC algorithm with that of Trapezoidal, Simpson, Differential Evolution(DE), particle swarm optimization(PSO) for numerical integration. The simulation results show that the mentioned algorithm for numerical integration outperforms the other algorithm.\",\"PeriodicalId\":153613,\"journal\":{\"name\":\"2012 International Conference on Control Engineering and Communication Technology\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Control Engineering and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCECT.2012.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Control Engineering and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCECT.2012.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们提出了一种基于蜂群行为的群体智能算法,即人工蜂群算法(Artificial Bee Colony, ABC)。在本研究中,通过模拟蜜蜂的觅食活动并反映被积体的变化趋势,采用ABC方法在给定的积分区间内对一组分裂进行优化。同时,本文还将ABC算法与梯形、辛普森、差分进化(DE)、粒子群优化(PSO)算法在数值积分中的性能进行了比较。仿真结果表明,该算法在数值积分方面优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Numerical Integration Method Based on Artificial Bee Colony Algorithm
An new swarm intelligence algorithm based on the behavior of honeybee swarms has been proposed for some years, namely, Artificial Bee Colony(ABC). In this work, ABC is used for optimizing a set of split in a given integration interval by simulating the foraging activities of bees and reflecting the changing trends of the integrand. At the same time, this work also compares the performance of ABC algorithm with that of Trapezoidal, Simpson, Differential Evolution(DE), particle swarm optimization(PSO) for numerical integration. The simulation results show that the mentioned algorithm for numerical integration outperforms the other algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信