用于模型检验的转换概率程序

Ryan Bernstein, Matthijs V'ak'ar, Jeannette M. Wing
{"title":"用于模型检验的转换概率程序","authors":"Ryan Bernstein, Matthijs V'ak'ar, Jeannette M. Wing","doi":"10.1145/3412815.3416896","DOIUrl":null,"url":null,"abstract":"Probabilistic programming is perfectly suited to reliable and transparent data science, as it allows the user to specify their models in a high-level language without worrying about the complexities of how to fit the models. Static analysis of probabilistic programs presents even further opportunities for enabling a high-level style of programming, by automating time-consuming and error-prone tasks. We apply static analysis to probabilistic programs to automate large parts of two crucial model checking methods: Prior Predictive Checks and Simulation-Based Calibration. Our method transforms a probabilistic program specifying a density function into an efficient forward-sampling form. To achieve this transformation, we extract a factor graph from a probabilistic program using static analysis, generate a set of proposal directed acyclic graphs using a SAT solver, select a graph which will produce provably correct sampling code, then generate one or more sampling programs. We allow minimal user interaction to broaden the scope of application beyond what is possible with static analysis alone. We present an implementation targeting the popular Stan probabilistic programming language, automating large parts of a robust Bayesian workflow for a wide community of probabilistic programming users.","PeriodicalId":176130,"journal":{"name":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming Probabilistic Programs for Model Checking\",\"authors\":\"Ryan Bernstein, Matthijs V'ak'ar, Jeannette M. Wing\",\"doi\":\"10.1145/3412815.3416896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Probabilistic programming is perfectly suited to reliable and transparent data science, as it allows the user to specify their models in a high-level language without worrying about the complexities of how to fit the models. Static analysis of probabilistic programs presents even further opportunities for enabling a high-level style of programming, by automating time-consuming and error-prone tasks. We apply static analysis to probabilistic programs to automate large parts of two crucial model checking methods: Prior Predictive Checks and Simulation-Based Calibration. Our method transforms a probabilistic program specifying a density function into an efficient forward-sampling form. To achieve this transformation, we extract a factor graph from a probabilistic program using static analysis, generate a set of proposal directed acyclic graphs using a SAT solver, select a graph which will produce provably correct sampling code, then generate one or more sampling programs. We allow minimal user interaction to broaden the scope of application beyond what is possible with static analysis alone. We present an implementation targeting the popular Stan probabilistic programming language, automating large parts of a robust Bayesian workflow for a wide community of probabilistic programming users.\",\"PeriodicalId\":176130,\"journal\":{\"name\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3412815.3416896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM-IMS on Foundations of Data Science Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3412815.3416896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

概率编程非常适合可靠和透明的数据科学,因为它允许用户用高级语言指定他们的模型,而不必担心如何拟合模型的复杂性。概率程序的静态分析通过自动化耗时且容易出错的任务,为实现高级编程风格提供了进一步的机会。我们将静态分析应用于概率程序,以自动化两种关键模型检查方法的大部分:先验预测检查和基于仿真的校准。我们的方法将指定密度函数的概率程序转换为有效的前向抽样形式。为了实现这种转换,我们使用静态分析从概率程序中提取因子图,使用SAT求解器生成一组建议有向无环图,选择一个将产生可证明正确的采样代码的图,然后生成一个或多个采样程序。我们允许最少的用户交互来扩展应用程序的范围,而不仅仅是静态分析。我们提出了一个针对流行的Stan概率编程语言的实现,为广泛的概率编程用户社区自动化健壮的贝叶斯工作流的大部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transforming Probabilistic Programs for Model Checking
Probabilistic programming is perfectly suited to reliable and transparent data science, as it allows the user to specify their models in a high-level language without worrying about the complexities of how to fit the models. Static analysis of probabilistic programs presents even further opportunities for enabling a high-level style of programming, by automating time-consuming and error-prone tasks. We apply static analysis to probabilistic programs to automate large parts of two crucial model checking methods: Prior Predictive Checks and Simulation-Based Calibration. Our method transforms a probabilistic program specifying a density function into an efficient forward-sampling form. To achieve this transformation, we extract a factor graph from a probabilistic program using static analysis, generate a set of proposal directed acyclic graphs using a SAT solver, select a graph which will produce provably correct sampling code, then generate one or more sampling programs. We allow minimal user interaction to broaden the scope of application beyond what is possible with static analysis alone. We present an implementation targeting the popular Stan probabilistic programming language, automating large parts of a robust Bayesian workflow for a wide community of probabilistic programming users.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信