“谁造的这个垃圾?”开发软件工程领域特定毒性检测器

Jaydeb Sarker
{"title":"“谁造的这个垃圾?”开发软件工程领域特定毒性检测器","authors":"Jaydeb Sarker","doi":"10.1145/3551349.3559508","DOIUrl":null,"url":null,"abstract":"Since toxicity during developers’ interactions in open source software (OSS) projects show negative impacts on developers’ relation, a toxicity detector for the Software Engineering (SE) domain is needed. However, prior studies found that contemporary toxicity detection tools performed poorly with the SE texts. To address this challenge, I have developed ToxiCR, a SE-specific toxicity detector that is evaluated with manually labeled 19,571 code review comments. I evaluate ToxiCR with different combinations of ten supervised learning models, five text vectorizers, and eight preprocessing techniques (two of them are SE domain-specific). After applying all possible combinations, I have found that ToxiCR significantly outperformed existing toxicity classifiers with accuracy of 95.8% and an F1 score of 88.9%.","PeriodicalId":197939,"journal":{"name":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"‘Who built this crap?’ Developing a Software Engineering Domain Specific Toxicity Detector\",\"authors\":\"Jaydeb Sarker\",\"doi\":\"10.1145/3551349.3559508\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since toxicity during developers’ interactions in open source software (OSS) projects show negative impacts on developers’ relation, a toxicity detector for the Software Engineering (SE) domain is needed. However, prior studies found that contemporary toxicity detection tools performed poorly with the SE texts. To address this challenge, I have developed ToxiCR, a SE-specific toxicity detector that is evaluated with manually labeled 19,571 code review comments. I evaluate ToxiCR with different combinations of ten supervised learning models, five text vectorizers, and eight preprocessing techniques (two of them are SE domain-specific). After applying all possible combinations, I have found that ToxiCR significantly outperformed existing toxicity classifiers with accuracy of 95.8% and an F1 score of 88.9%.\",\"PeriodicalId\":197939,\"journal\":{\"name\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3551349.3559508\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3551349.3559508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于开源软件(OSS)项目中开发人员交互过程中的毒性会对开发人员之间的关系产生负面影响,因此需要针对软件工程(SE)领域的毒性检测器。然而,先前的研究发现,当代毒性检测工具在SE文本中表现不佳。为了应对这一挑战,我开发了ToxiCR,这是一个针对se的毒性检测器,可以使用手动标记的19,571个代码审查注释进行评估。我用十种监督学习模型、五种文本矢量器和八种预处理技术(其中两种是特定于SE领域的)的不同组合来评估ToxiCR。在应用了所有可能的组合后,我发现毒物r显著优于现有的毒性分类器,准确率为95.8%,F1得分为88.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
‘Who built this crap?’ Developing a Software Engineering Domain Specific Toxicity Detector
Since toxicity during developers’ interactions in open source software (OSS) projects show negative impacts on developers’ relation, a toxicity detector for the Software Engineering (SE) domain is needed. However, prior studies found that contemporary toxicity detection tools performed poorly with the SE texts. To address this challenge, I have developed ToxiCR, a SE-specific toxicity detector that is evaluated with manually labeled 19,571 code review comments. I evaluate ToxiCR with different combinations of ten supervised learning models, five text vectorizers, and eight preprocessing techniques (two of them are SE domain-specific). After applying all possible combinations, I have found that ToxiCR significantly outperformed existing toxicity classifiers with accuracy of 95.8% and an F1 score of 88.9%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信