一个可扩展的、非参数的Hadoop异常检测框架

Li Yu, Z. Lan
{"title":"一个可扩展的、非参数的Hadoop异常检测框架","authors":"Li Yu, Z. Lan","doi":"10.1145/2494621.2494643","DOIUrl":null,"url":null,"abstract":"In this paper, we present a scalable and practical problem diagnosis framework for Hadoop environments. Our design features a decentralized approach based on hierarchical grouping and a novel non-parametric diagnostic mechanism. We evaluate our framework under various Hadoop workloads. The experimental results show that our design outperforms traditional methods significantly in the context of complex anomaly patterns and high anomaly probability.","PeriodicalId":190559,"journal":{"name":"ACM Cloud and Autonomic Computing Conference","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A scalable, non-parametric anomaly detection framework for Hadoop\",\"authors\":\"Li Yu, Z. Lan\",\"doi\":\"10.1145/2494621.2494643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a scalable and practical problem diagnosis framework for Hadoop environments. Our design features a decentralized approach based on hierarchical grouping and a novel non-parametric diagnostic mechanism. We evaluate our framework under various Hadoop workloads. The experimental results show that our design outperforms traditional methods significantly in the context of complex anomaly patterns and high anomaly probability.\",\"PeriodicalId\":190559,\"journal\":{\"name\":\"ACM Cloud and Autonomic Computing Conference\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Cloud and Autonomic Computing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2494621.2494643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Cloud and Autonomic Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2494621.2494643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

在本文中,我们提出了一个可扩展的、实用的Hadoop环境问题诊断框架。我们的设计特点是基于分层分组的分散方法和一种新的非参数诊断机制。我们在各种Hadoop工作负载下评估我们的框架。实验结果表明,在复杂异常模式和高异常概率的情况下,我们的设计明显优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A scalable, non-parametric anomaly detection framework for Hadoop
In this paper, we present a scalable and practical problem diagnosis framework for Hadoop environments. Our design features a decentralized approach based on hierarchical grouping and a novel non-parametric diagnostic mechanism. We evaluate our framework under various Hadoop workloads. The experimental results show that our design outperforms traditional methods significantly in the context of complex anomaly patterns and high anomaly probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信