利用输入参数不确定性降低SPICE器件模型数据路径精度

Nachiket Kapre
{"title":"利用输入参数不确定性降低SPICE器件模型数据路径精度","authors":"Nachiket Kapre","doi":"10.1109/FCCM.2013.28","DOIUrl":null,"url":null,"abstract":"Double-precision computations operating on inputs with uncertainty margins can be compiled to lower precision fixed-point datapaths with no loss in output accuracy. We observe that ideal SPICE model equations based on device physics include process parameters which must be matched with real-world measurements on specific silicon manufacturing processes through a noisy data-fitting process. We expose this uncertainty information to the open-source FX-SCORE compiler to enable automated error analysis using the Gappa++ backend and hardware circuit generation using Vivado HLS. We construct an error model based on interval analysis to statically identify sufficient fixedpoint precision in the presence of uncertainty as compared to reference double-precision design. We demonstrate 1-16× LUT count improvements, 0.5-2.4× DSP count reductions and 0.9-4× FPGA power reduction for SPICE devices such as Diode, Level-1 MOSFET and an Approximate MOSFET designs. We generate confidence in our approach using Monte-Carlo simulations with auto-generated Matlab models of the SPICE device equations.","PeriodicalId":269887,"journal":{"name":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"217 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Exploiting Input Parameter Uncertainty for Reducing Datapath Precision of SPICE Device Models\",\"authors\":\"Nachiket Kapre\",\"doi\":\"10.1109/FCCM.2013.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Double-precision computations operating on inputs with uncertainty margins can be compiled to lower precision fixed-point datapaths with no loss in output accuracy. We observe that ideal SPICE model equations based on device physics include process parameters which must be matched with real-world measurements on specific silicon manufacturing processes through a noisy data-fitting process. We expose this uncertainty information to the open-source FX-SCORE compiler to enable automated error analysis using the Gappa++ backend and hardware circuit generation using Vivado HLS. We construct an error model based on interval analysis to statically identify sufficient fixedpoint precision in the presence of uncertainty as compared to reference double-precision design. We demonstrate 1-16× LUT count improvements, 0.5-2.4× DSP count reductions and 0.9-4× FPGA power reduction for SPICE devices such as Diode, Level-1 MOSFET and an Approximate MOSFET designs. We generate confidence in our approach using Monte-Carlo simulations with auto-generated Matlab models of the SPICE device equations.\",\"PeriodicalId\":269887,\"journal\":{\"name\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"217 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2013.28\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2013.28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

双精度计算操作的输入与不确定性边界可以编译为低精度定点数据路径,而不损失输出精度。我们观察到,基于器件物理的理想SPICE模型方程包括工艺参数,这些参数必须通过噪声数据拟合过程与特定硅制造工艺的实际测量相匹配。我们将这些不确定性信息暴露给开源FX-SCORE编译器,以便使用gappa++后端进行自动错误分析,并使用Vivado HLS生成硬件电路。与参考的双精度设计相比,我们构建了一个基于区间分析的误差模型,在存在不确定性的情况下静态识别足够的不动点精度。我们展示了1-16倍的LUT计数改进,0.5-2.4倍的DSP计数降低和0.9-4倍的FPGA功耗降低,用于SPICE器件,如二极管,1级MOSFET和近似MOSFET设计。我们使用蒙特卡罗模拟和SPICE器件方程的自动生成的Matlab模型来对我们的方法产生信心。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploiting Input Parameter Uncertainty for Reducing Datapath Precision of SPICE Device Models
Double-precision computations operating on inputs with uncertainty margins can be compiled to lower precision fixed-point datapaths with no loss in output accuracy. We observe that ideal SPICE model equations based on device physics include process parameters which must be matched with real-world measurements on specific silicon manufacturing processes through a noisy data-fitting process. We expose this uncertainty information to the open-source FX-SCORE compiler to enable automated error analysis using the Gappa++ backend and hardware circuit generation using Vivado HLS. We construct an error model based on interval analysis to statically identify sufficient fixedpoint precision in the presence of uncertainty as compared to reference double-precision design. We demonstrate 1-16× LUT count improvements, 0.5-2.4× DSP count reductions and 0.9-4× FPGA power reduction for SPICE devices such as Diode, Level-1 MOSFET and an Approximate MOSFET designs. We generate confidence in our approach using Monte-Carlo simulations with auto-generated Matlab models of the SPICE device equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信