{"title":"利用人工智能和机器学习实现物流行业查询自动化的智能系统","authors":"Leo Liao, Ang Li","doi":"10.5121/csit.2022.120109","DOIUrl":null,"url":null,"abstract":"Operator and sales employees in the logistics industry often have to submit the same inquiry repetitively to different vendors and opt in for the quotation that will generate the greatest profit for the company [4]. This process can be very laborious and tedious. Meanwhile, for smaller companies that do not have a well-constructed database for quotation information, monitoring employee’s work is simply difficult to achieve [5]. To increase the efficiency of sales’ workflow in this particular industry, this application devises a platform that automates the inquiry process, analyzes quotations from different vendors, retrieves the most profitable one, and documents all inquiries an employee has committed [6]. The results, after a series of intensive testing, prove to be promising and satisfying. The machine learning model can successfully fetch the most cost-effective price after analyzing a list of emails containing common languages used in the industry. All histories of an employee’s inquiry can be correctly displayed on any front-end device. Overall, the obstacle presented above is largely solved.","PeriodicalId":189285,"journal":{"name":"Natural Language Processing (NLP) Trends","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Intelligent System to Automate the Inquery in Logistics Industry using AI and Machine Learning\",\"authors\":\"Leo Liao, Ang Li\",\"doi\":\"10.5121/csit.2022.120109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Operator and sales employees in the logistics industry often have to submit the same inquiry repetitively to different vendors and opt in for the quotation that will generate the greatest profit for the company [4]. This process can be very laborious and tedious. Meanwhile, for smaller companies that do not have a well-constructed database for quotation information, monitoring employee’s work is simply difficult to achieve [5]. To increase the efficiency of sales’ workflow in this particular industry, this application devises a platform that automates the inquiry process, analyzes quotations from different vendors, retrieves the most profitable one, and documents all inquiries an employee has committed [6]. The results, after a series of intensive testing, prove to be promising and satisfying. The machine learning model can successfully fetch the most cost-effective price after analyzing a list of emails containing common languages used in the industry. All histories of an employee’s inquiry can be correctly displayed on any front-end device. Overall, the obstacle presented above is largely solved.\",\"PeriodicalId\":189285,\"journal\":{\"name\":\"Natural Language Processing (NLP) Trends\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural Language Processing (NLP) Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2022.120109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Processing (NLP) Trends","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2022.120109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Intelligent System to Automate the Inquery in Logistics Industry using AI and Machine Learning
Operator and sales employees in the logistics industry often have to submit the same inquiry repetitively to different vendors and opt in for the quotation that will generate the greatest profit for the company [4]. This process can be very laborious and tedious. Meanwhile, for smaller companies that do not have a well-constructed database for quotation information, monitoring employee’s work is simply difficult to achieve [5]. To increase the efficiency of sales’ workflow in this particular industry, this application devises a platform that automates the inquiry process, analyzes quotations from different vendors, retrieves the most profitable one, and documents all inquiries an employee has committed [6]. The results, after a series of intensive testing, prove to be promising and satisfying. The machine learning model can successfully fetch the most cost-effective price after analyzing a list of emails containing common languages used in the industry. All histories of an employee’s inquiry can be correctly displayed on any front-end device. Overall, the obstacle presented above is largely solved.