{"title":"基于在线学习目标跟踪的弱分类器析取范式","authors":"Zhu Teng, D. Kang","doi":"10.5220/0004240501380146","DOIUrl":null,"url":null,"abstract":"The use of a strong classifier that is combined by an ensemble of weak classifiers has been prevalent in tracking, classification etc. In the conventional ensemble tracking, one weak classifier selects a 1D feature, and the strong classifier is combined by a number of 1D weak classifiers. In this paper, we present a novel tracking algorithm where weak classifiers are 2D disjunctive normal form (DNF) of these 1D weak classifiers. The final strong classifier is then a linear combination of weak classifiers and 2D DNF cell classifiers. We treat tracking as a binary classification problem, and one full DNF can express any particular Boolean function; therefore 2D DNF classifiers have the capacity to represent more complex distributions than original weak classifiers. This can strengthen any original weak classifier. We implement the algorithm and run the experiments on several video sequences.","PeriodicalId":411140,"journal":{"name":"International Conference on Computer Vision Theory and Applications","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Disjunctive Normal Form of Weak Classifiers for Online Learning based Object Tracking\",\"authors\":\"Zhu Teng, D. Kang\",\"doi\":\"10.5220/0004240501380146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of a strong classifier that is combined by an ensemble of weak classifiers has been prevalent in tracking, classification etc. In the conventional ensemble tracking, one weak classifier selects a 1D feature, and the strong classifier is combined by a number of 1D weak classifiers. In this paper, we present a novel tracking algorithm where weak classifiers are 2D disjunctive normal form (DNF) of these 1D weak classifiers. The final strong classifier is then a linear combination of weak classifiers and 2D DNF cell classifiers. We treat tracking as a binary classification problem, and one full DNF can express any particular Boolean function; therefore 2D DNF classifiers have the capacity to represent more complex distributions than original weak classifiers. This can strengthen any original weak classifier. We implement the algorithm and run the experiments on several video sequences.\",\"PeriodicalId\":411140,\"journal\":{\"name\":\"International Conference on Computer Vision Theory and Applications\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Computer Vision Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0004240501380146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Computer Vision Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004240501380146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disjunctive Normal Form of Weak Classifiers for Online Learning based Object Tracking
The use of a strong classifier that is combined by an ensemble of weak classifiers has been prevalent in tracking, classification etc. In the conventional ensemble tracking, one weak classifier selects a 1D feature, and the strong classifier is combined by a number of 1D weak classifiers. In this paper, we present a novel tracking algorithm where weak classifiers are 2D disjunctive normal form (DNF) of these 1D weak classifiers. The final strong classifier is then a linear combination of weak classifiers and 2D DNF cell classifiers. We treat tracking as a binary classification problem, and one full DNF can express any particular Boolean function; therefore 2D DNF classifiers have the capacity to represent more complex distributions than original weak classifiers. This can strengthen any original weak classifier. We implement the algorithm and run the experiments on several video sequences.