短路电流对绝缘电缆热机械性能的影响

M. Hamdan, J. Pilgrim, P. Lewin
{"title":"短路电流对绝缘电缆热机械性能的影响","authors":"M. Hamdan, J. Pilgrim, P. Lewin","doi":"10.1109/CEIDP.2018.8544740","DOIUrl":null,"url":null,"abstract":"Cables are expected to have the ability to safely carry the rated short circuit current during abnormal dynamic conditions, such that a through fault does not damage the whole cable. For XLPE insulated cables, the maximum temperature during short circuits should not exceed 250 °C. This temperature must not adversely affect the conductor or the lead sheath. However, the effect of the thermo-mechanical stresses generated on the speed of degradation of the insulation system is of great importance. This paper analyses the influence of short circuit current on the interface between the cable sheath and insulation. Based on the theory of elasticity, a finite element thermomechanical model is proposed of a single core cable, incorporating temperature-dependent properties. The model demonstrates the importance of the mechanical properties of the insulation material, which plays a critical role in understanding the internal thermomechanical stresses within a cable.","PeriodicalId":377544,"journal":{"name":"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Short Circuit Currents on Thermo-mechanical Properties of Insulated Cables\",\"authors\":\"M. Hamdan, J. Pilgrim, P. Lewin\",\"doi\":\"10.1109/CEIDP.2018.8544740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cables are expected to have the ability to safely carry the rated short circuit current during abnormal dynamic conditions, such that a through fault does not damage the whole cable. For XLPE insulated cables, the maximum temperature during short circuits should not exceed 250 °C. This temperature must not adversely affect the conductor or the lead sheath. However, the effect of the thermo-mechanical stresses generated on the speed of degradation of the insulation system is of great importance. This paper analyses the influence of short circuit current on the interface between the cable sheath and insulation. Based on the theory of elasticity, a finite element thermomechanical model is proposed of a single core cable, incorporating temperature-dependent properties. The model demonstrates the importance of the mechanical properties of the insulation material, which plays a critical role in understanding the internal thermomechanical stresses within a cable.\",\"PeriodicalId\":377544,\"journal\":{\"name\":\"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEIDP.2018.8544740\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIDP.2018.8544740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电缆应具有在异常动态情况下安全承载额定短路电流的能力,从而使贯穿故障不损坏整个电缆。对于交联聚乙烯绝缘电缆,短路时的最高温度不超过250℃。此温度不得对导体或导线护套产生不利影响。然而,产生的热-机械应力对保温系统退化速度的影响是非常重要的。分析了短路电流对电缆护套与绝缘界面的影响。基于弹性力学理论,建立了单芯电缆的有限元热力学模型,并考虑了电缆的温度特性。该模型显示了绝缘材料力学性能的重要性,这对于理解电缆内部的热机械应力起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Short Circuit Currents on Thermo-mechanical Properties of Insulated Cables
Cables are expected to have the ability to safely carry the rated short circuit current during abnormal dynamic conditions, such that a through fault does not damage the whole cable. For XLPE insulated cables, the maximum temperature during short circuits should not exceed 250 °C. This temperature must not adversely affect the conductor or the lead sheath. However, the effect of the thermo-mechanical stresses generated on the speed of degradation of the insulation system is of great importance. This paper analyses the influence of short circuit current on the interface between the cable sheath and insulation. Based on the theory of elasticity, a finite element thermomechanical model is proposed of a single core cable, incorporating temperature-dependent properties. The model demonstrates the importance of the mechanical properties of the insulation material, which plays a critical role in understanding the internal thermomechanical stresses within a cable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信