高效和灵活的检查点/恢复分裂内存虚拟机

Tokito Murata, Kenichi Kourai
{"title":"高效和灵活的检查点/恢复分裂内存虚拟机","authors":"Tokito Murata, Kenichi Kourai","doi":"10.1109/ICCI51257.2020.9247679","DOIUrl":null,"url":null,"abstract":"Recently, clouds provide virtual machines (VMs) with a large amount of memory for big data analysis. For easier migration of such VMs, split migration divides the memory of a VM into several pieces and transfers them to multiple hosts. Since the migrated VM called a split-memory VM needs to exchange memory data between the hosts, it is inherently subject to host and network failures. As a countermeasure, a checkpoint/restore mechanism has been used to periodically save the state of a VM, but the traditional mechanism is not suitable for split-memory VMs. It has to move a large amount of memory data between hosts during checkpointing and can just restores a normal VM on one host. This paper proposes D-CRES for efficient and flexible checkpoint/restore of split-memory VMs. D-CRES achieves fast checkpointing by saving the memory of a VM in parallel at all the hosts without moving memory data. For live checkpointing, it consistently saves the memory of a running VM by considering memory data exchanged by the VM itself. In addition, it enables a split-memory VM to be restored in parallel at multiple hosts. We have implemented checkpoint/restore of D-CRES in KVM and showed that the performance was up to 5.4 times higher than that of using the traditional mechanism.","PeriodicalId":194158,"journal":{"name":"2020 International Conference on Computational Intelligence (ICCI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient and Flexible Checkpoint/Restore of Split-memory Virtual Machines\",\"authors\":\"Tokito Murata, Kenichi Kourai\",\"doi\":\"10.1109/ICCI51257.2020.9247679\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, clouds provide virtual machines (VMs) with a large amount of memory for big data analysis. For easier migration of such VMs, split migration divides the memory of a VM into several pieces and transfers them to multiple hosts. Since the migrated VM called a split-memory VM needs to exchange memory data between the hosts, it is inherently subject to host and network failures. As a countermeasure, a checkpoint/restore mechanism has been used to periodically save the state of a VM, but the traditional mechanism is not suitable for split-memory VMs. It has to move a large amount of memory data between hosts during checkpointing and can just restores a normal VM on one host. This paper proposes D-CRES for efficient and flexible checkpoint/restore of split-memory VMs. D-CRES achieves fast checkpointing by saving the memory of a VM in parallel at all the hosts without moving memory data. For live checkpointing, it consistently saves the memory of a running VM by considering memory data exchanged by the VM itself. In addition, it enables a split-memory VM to be restored in parallel at multiple hosts. We have implemented checkpoint/restore of D-CRES in KVM and showed that the performance was up to 5.4 times higher than that of using the traditional mechanism.\",\"PeriodicalId\":194158,\"journal\":{\"name\":\"2020 International Conference on Computational Intelligence (ICCI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Computational Intelligence (ICCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCI51257.2020.9247679\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Computational Intelligence (ICCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCI51257.2020.9247679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,云为大数据分析提供了大量内存的虚拟机(vm)。为了方便虚拟机迁移,分裂迁移是将虚拟机的内存分成若干块,分别传输到多个主机上。由于迁移后的虚拟机(称为分割内存虚拟机)需要在主机之间交换内存数据,因此它本质上受到主机和网络故障的影响。作为对策,检查点/恢复机制用于定期保存虚拟机的状态,但传统的机制不适合分裂内存虚拟机。它必须在检查点期间在主机之间移动大量内存数据,并且只能在一台主机上恢复正常的VM。本文提出了一种高效灵活的分割内存虚拟机检查点/恢复的D-CRES方法。D-CRES通过在所有主机上并行保存虚拟机的内存而无需移动内存数据来实现快速检查点。对于实时检查点,它通过考虑VM本身交换的内存数据,始终如一地节省正在运行的VM的内存。此外,它还支持在多台主机上并行恢复分裂内存虚拟机。我们在KVM中实现了D-CRES的检查点/恢复,性能比使用传统机制提高了5.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient and Flexible Checkpoint/Restore of Split-memory Virtual Machines
Recently, clouds provide virtual machines (VMs) with a large amount of memory for big data analysis. For easier migration of such VMs, split migration divides the memory of a VM into several pieces and transfers them to multiple hosts. Since the migrated VM called a split-memory VM needs to exchange memory data between the hosts, it is inherently subject to host and network failures. As a countermeasure, a checkpoint/restore mechanism has been used to periodically save the state of a VM, but the traditional mechanism is not suitable for split-memory VMs. It has to move a large amount of memory data between hosts during checkpointing and can just restores a normal VM on one host. This paper proposes D-CRES for efficient and flexible checkpoint/restore of split-memory VMs. D-CRES achieves fast checkpointing by saving the memory of a VM in parallel at all the hosts without moving memory data. For live checkpointing, it consistently saves the memory of a running VM by considering memory data exchanged by the VM itself. In addition, it enables a split-memory VM to be restored in parallel at multiple hosts. We have implemented checkpoint/restore of D-CRES in KVM and showed that the performance was up to 5.4 times higher than that of using the traditional mechanism.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信