满足感的历史

J. Franco, J. Martin
{"title":"满足感的历史","authors":"J. Franco, J. Martin","doi":"10.3233/FAIA200984","DOIUrl":null,"url":null,"abstract":"This chapter traces the links between the notion of Satisfiability and the attempts by mathematicians, philosophers, engineers, and scientists over the last 2300 years to develop effective processes for emulating human reasoning and scientific discovery, and for assisting in the development of electronic computers and other electronic components. Satisfiability was present implicitly in the development of ancient logics such as Aristotle’s syllogistic logic, its extentions by the Stoics, and Lull’s diagrammatic logic of the medieval period. From the renaissance to Boole algebraic approaches to effective process replaced the logics of the ancients and all but enunciated the meaning of Satisfiability for propositional logic. Clarification of the concept is credited to Tarski in working out necessary and sufficient conditions for “p is true” for any formula p in first-order syntax. At about the same time, the study of effective process increased in importance with the resulting development of lambda calculus, recursive function theory, and Turing machines, all of which became the foundations of computer science and are linked to the notion of Satisfiability. Shannon provided the link to the computer age and Davis and Putnam directly linked Satisfiability to automated reasoning via an algorithm which is the backbone of most modern SAT solvers. These events propelled the study of Satisfiability for the next several decades, reaching “epidemic proportions” in the 1990s and 2000s, and the chapter concludes with a brief history of each of the major Satisfiability-related research tracks that developed during that period.","PeriodicalId":250589,"journal":{"name":"Handbook of Satisfiability","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A History of Satisfiability\",\"authors\":\"J. Franco, J. Martin\",\"doi\":\"10.3233/FAIA200984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter traces the links between the notion of Satisfiability and the attempts by mathematicians, philosophers, engineers, and scientists over the last 2300 years to develop effective processes for emulating human reasoning and scientific discovery, and for assisting in the development of electronic computers and other electronic components. Satisfiability was present implicitly in the development of ancient logics such as Aristotle’s syllogistic logic, its extentions by the Stoics, and Lull’s diagrammatic logic of the medieval period. From the renaissance to Boole algebraic approaches to effective process replaced the logics of the ancients and all but enunciated the meaning of Satisfiability for propositional logic. Clarification of the concept is credited to Tarski in working out necessary and sufficient conditions for “p is true” for any formula p in first-order syntax. At about the same time, the study of effective process increased in importance with the resulting development of lambda calculus, recursive function theory, and Turing machines, all of which became the foundations of computer science and are linked to the notion of Satisfiability. Shannon provided the link to the computer age and Davis and Putnam directly linked Satisfiability to automated reasoning via an algorithm which is the backbone of most modern SAT solvers. These events propelled the study of Satisfiability for the next several decades, reaching “epidemic proportions” in the 1990s and 2000s, and the chapter concludes with a brief history of each of the major Satisfiability-related research tracks that developed during that period.\",\"PeriodicalId\":250589,\"journal\":{\"name\":\"Handbook of Satisfiability\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Handbook of Satisfiability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/FAIA200984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of Satisfiability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/FAIA200984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本章追溯了可满足性的概念与过去2300年来数学家、哲学家、工程师和科学家为模拟人类推理和科学发现以及协助电子计算机和其他电子元件的发展而开发的有效过程之间的联系。可满足性隐含地存在于古代逻辑的发展中,如亚里士多德的三段论逻辑,斯多葛学派对其的扩展,以及中世纪时期的卢尔图解逻辑。从文艺复兴到布尔,代数方法的有效过程取代了古人的逻辑,几乎阐明了命题逻辑的可满足性的意义。这个概念的澄清归功于塔斯基,他在一阶语法中为任何公式p提出了" p为真"的充分必要条件。大约在同一时间,随着λ演算、递归函数理论和图灵机的发展,对有效过程的研究变得越来越重要,所有这些都成为计算机科学的基础,并与可满足性的概念联系在一起。香农提供了与计算机时代的联系,戴维斯和普特南通过一种算法直接将可满足性与自动推理联系起来,这种算法是大多数现代SAT解决方案的支柱。这些事件推动了对可满足性的研究,在接下来的几十年里,在20世纪90年代和21世纪初达到了“流行病的程度”,本章最后简要介绍了那段时期发展起来的每一个与可满足性相关的主要研究轨迹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A History of Satisfiability
This chapter traces the links between the notion of Satisfiability and the attempts by mathematicians, philosophers, engineers, and scientists over the last 2300 years to develop effective processes for emulating human reasoning and scientific discovery, and for assisting in the development of electronic computers and other electronic components. Satisfiability was present implicitly in the development of ancient logics such as Aristotle’s syllogistic logic, its extentions by the Stoics, and Lull’s diagrammatic logic of the medieval period. From the renaissance to Boole algebraic approaches to effective process replaced the logics of the ancients and all but enunciated the meaning of Satisfiability for propositional logic. Clarification of the concept is credited to Tarski in working out necessary and sufficient conditions for “p is true” for any formula p in first-order syntax. At about the same time, the study of effective process increased in importance with the resulting development of lambda calculus, recursive function theory, and Turing machines, all of which became the foundations of computer science and are linked to the notion of Satisfiability. Shannon provided the link to the computer age and Davis and Putnam directly linked Satisfiability to automated reasoning via an algorithm which is the backbone of most modern SAT solvers. These events propelled the study of Satisfiability for the next several decades, reaching “epidemic proportions” in the 1990s and 2000s, and the chapter concludes with a brief history of each of the major Satisfiability-related research tracks that developed during that period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信