用于多导联心电图分类的无卷积波形变压器

A. Natarajan, G. Boverman, Yale Chang, Corneliu C Antonescu, Jonathan Rubin
{"title":"用于多导联心电图分类的无卷积波形变压器","authors":"A. Natarajan, G. Boverman, Yale Chang, Corneliu C Antonescu, Jonathan Rubin","doi":"10.23919/cinc53138.2021.9662697","DOIUrl":null,"url":null,"abstract":"We present our entry to the 2021 PhysioNet/CinC challenge - a waveform transformer model to detect cardiac abnormalities from ECG recordings. We compare the performance of the waveform transformer model on different ECG-lead subsets using approximately 88,000 ECG recordings from six datasets. In the official rankings, team prna ranked between 9 and 15 on 12,6,4,3 and 2-lead sets respectively. Our waveform transformer model achieved scores of 0.49, 0.49, 0.46, 0.47 and 0.44 on different ECG-lead subsets, with an average score of 0.47 on the held-out test set. Our combined performance across all leads placed us at rank 11 out of 39 officially ranking teams.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Convolution-Free Waveform Transformers for Multi-Lead ECG Classification\",\"authors\":\"A. Natarajan, G. Boverman, Yale Chang, Corneliu C Antonescu, Jonathan Rubin\",\"doi\":\"10.23919/cinc53138.2021.9662697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present our entry to the 2021 PhysioNet/CinC challenge - a waveform transformer model to detect cardiac abnormalities from ECG recordings. We compare the performance of the waveform transformer model on different ECG-lead subsets using approximately 88,000 ECG recordings from six datasets. In the official rankings, team prna ranked between 9 and 15 on 12,6,4,3 and 2-lead sets respectively. Our waveform transformer model achieved scores of 0.49, 0.49, 0.46, 0.47 and 0.44 on different ECG-lead subsets, with an average score of 0.47 on the held-out test set. Our combined performance across all leads placed us at rank 11 out of 39 officially ranking teams.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662697\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们向2021年PhysioNet/CinC挑战赛提交了我们的参赛作品——一个从ECG记录中检测心脏异常的波形变压器模型。我们使用来自六个数据集的大约88,000个ECG记录,比较了波形变压器模型在不同ECG导联子集上的性能。在官方排名中,prna队分别在第12、6、4、3和2局领先,排名在9到15之间。我们的波形变压器模型在不同ecg导联子集上的得分分别为0.49、0.49、0.46、0.47和0.44,在hold out测试集上的平均得分为0.47。我们在所有领先的综合表现使我们在39个官方排名团队中排名第11位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convolution-Free Waveform Transformers for Multi-Lead ECG Classification
We present our entry to the 2021 PhysioNet/CinC challenge - a waveform transformer model to detect cardiac abnormalities from ECG recordings. We compare the performance of the waveform transformer model on different ECG-lead subsets using approximately 88,000 ECG recordings from six datasets. In the official rankings, team prna ranked between 9 and 15 on 12,6,4,3 and 2-lead sets respectively. Our waveform transformer model achieved scores of 0.49, 0.49, 0.46, 0.47 and 0.44 on different ECG-lead subsets, with an average score of 0.47 on the held-out test set. Our combined performance across all leads placed us at rank 11 out of 39 officially ranking teams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信