基于SIFT描述符的木材图像检索

Shaoli Huang, C. Cai, Yang Zhang
{"title":"基于SIFT描述符的木材图像检索","authors":"Shaoli Huang, C. Cai, Yang Zhang","doi":"10.1109/CISE.2009.5365099","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new representation and matching scheme for wood image retrieval using Scale Invariant Feature Transformation (SIFT). We extract SIFT feature points in scale space and perform matching based on the texture information around the feature points using SIFT feature operator. This scheme can be appended to most existing wood image retrieval systems and improve their retrieval accuracy and efficiency. Experimental results demonstrate that the performance of this scheme is efficient and stable enough for wood image retrieval technique.","PeriodicalId":135441,"journal":{"name":"2009 International Conference on Computational Intelligence and Software Engineering","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Wood Image Retrieval Using SIFT Descriptor\",\"authors\":\"Shaoli Huang, C. Cai, Yang Zhang\",\"doi\":\"10.1109/CISE.2009.5365099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new representation and matching scheme for wood image retrieval using Scale Invariant Feature Transformation (SIFT). We extract SIFT feature points in scale space and perform matching based on the texture information around the feature points using SIFT feature operator. This scheme can be appended to most existing wood image retrieval systems and improve their retrieval accuracy and efficiency. Experimental results demonstrate that the performance of this scheme is efficient and stable enough for wood image retrieval technique.\",\"PeriodicalId\":135441,\"journal\":{\"name\":\"2009 International Conference on Computational Intelligence and Software Engineering\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Computational Intelligence and Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISE.2009.5365099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2009.5365099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文提出了一种基于尺度不变特征变换(SIFT)的木材图像检索方法。在尺度空间中提取SIFT特征点,利用SIFT特征算子根据特征点周围的纹理信息进行匹配。该方案可以附加到现有的大多数木材图像检索系统中,提高其检索精度和效率。实验结果表明,该方法对木材图像检索技术具有较高的效率和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wood Image Retrieval Using SIFT Descriptor
In this paper, we propose a new representation and matching scheme for wood image retrieval using Scale Invariant Feature Transformation (SIFT). We extract SIFT feature points in scale space and perform matching based on the texture information around the feature points using SIFT feature operator. This scheme can be appended to most existing wood image retrieval systems and improve their retrieval accuracy and efficiency. Experimental results demonstrate that the performance of this scheme is efficient and stable enough for wood image retrieval technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信