海森堡型群商Schrödinger方程的可观察性和可控性

C. Kammerer, Cyril Letrouit Dma, Cage, Ljll
{"title":"海森堡型群商Schrödinger方程的可观察性和可控性","authors":"C. Kammerer, Cyril Letrouit Dma, Cage, Ljll","doi":"10.5802/jep.176","DOIUrl":null,"url":null,"abstract":"We give necessary and sufficient conditions for the controllability of a Schr{o}dinger equation involving a subelliptic operator on a compact manifold. This subelliptic operator is the sub-Laplacian of the manifold that is obtained by taking the quotient of a group of Heisenberg type by one of its discrete subgroups. This class of nilpotent Lie groups is a major example of stratified Lie groups of step 2. The sub-Laplacian involved in these Schr{o}dinger equations is subelliptic, and, contrarily to what happens for the usual elliptic Schr{o}dinger equation for example on flat tori or on negatively curved manifolds, there exists a minimal time of controllability. The main tools used in the proofs are (operator-valued) semi-classical measures constructed by use of representation theory and a notion of semi-classical wave packets that we introduce here in the context of groups of Heisenberg type.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type\",\"authors\":\"C. Kammerer, Cyril Letrouit Dma, Cage, Ljll\",\"doi\":\"10.5802/jep.176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give necessary and sufficient conditions for the controllability of a Schr{o}dinger equation involving a subelliptic operator on a compact manifold. This subelliptic operator is the sub-Laplacian of the manifold that is obtained by taking the quotient of a group of Heisenberg type by one of its discrete subgroups. This class of nilpotent Lie groups is a major example of stratified Lie groups of step 2. The sub-Laplacian involved in these Schr{o}dinger equations is subelliptic, and, contrarily to what happens for the usual elliptic Schr{o}dinger equation for example on flat tori or on negatively curved manifolds, there exists a minimal time of controllability. The main tools used in the proofs are (operator-valued) semi-classical measures constructed by use of representation theory and a notion of semi-classical wave packets that we introduce here in the context of groups of Heisenberg type.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

给出了紧流形上涉及亚椭圆算子的Schr{o}dinger方程的可控性的充分必要条件。这个次椭圆算子是流形的次拉普拉斯算子,流形是由海森堡型群与它的一个离散子群的商得到的。这类幂零李群是步骤2的分层李群的一个主要例子。这些薛定谔方程中的子拉普拉斯是次椭圆型的,与通常的椭圆型薛定谔方程相反,例如在平坦环面或负弯曲流形上,存在最小的可控时间。在证明中使用的主要工具是(算符值)半经典测度,它是由表示理论和我们在这里在海森堡型群的背景下引入的半经典波包的概念构造的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observability and controllability for the Schrödinger equation on quotients of groups of Heisenberg type
We give necessary and sufficient conditions for the controllability of a Schr{o}dinger equation involving a subelliptic operator on a compact manifold. This subelliptic operator is the sub-Laplacian of the manifold that is obtained by taking the quotient of a group of Heisenberg type by one of its discrete subgroups. This class of nilpotent Lie groups is a major example of stratified Lie groups of step 2. The sub-Laplacian involved in these Schr{o}dinger equations is subelliptic, and, contrarily to what happens for the usual elliptic Schr{o}dinger equation for example on flat tori or on negatively curved manifolds, there exists a minimal time of controllability. The main tools used in the proofs are (operator-valued) semi-classical measures constructed by use of representation theory and a notion of semi-classical wave packets that we introduce here in the context of groups of Heisenberg type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信