粗糙表面附近液滴运动的三维光谱边界元计算研究

Yechun Wang, Xinnan Wang
{"title":"粗糙表面附近液滴运动的三维光谱边界元计算研究","authors":"Yechun Wang, Xinnan Wang","doi":"10.1115/ajkfluids2019-5137","DOIUrl":null,"url":null,"abstract":"\n A plethora of studies have investigated the motion of a liquid droplet in the vicinity of a smooth surface, incurred by shear flow, parabolic flow or gravity. However, there are few studies that consider the roughness of the surface that could affect the droplet motion. In this study, we employ a 3D spectral boundary element method for interfacial dynamics to examine the droplet translation, migration, and deformation in the vicinity of a rough surface due to shear flow. The roughness feature of the surface is comparable to the size of the droplet and is simulated with sinusoidal functions. Topologies of epoxy coating surfaces are also considered in the computations. The roughness and profile of the coating surface is obtained by atomic force microscopy. The computational results show that the surface roughness affects significantly the behavior of a deformable droplet near the surface, including its deformation and migration speed. In return, the dynamics of the droplet also influences the stress distribution on the rough surface. The results of this study could provide theoretical foundation in the prediction of particle induced erosion corrosion of organic coatings.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Studies of Droplet Motion Near a Rough Surface via 3D Spectral Boundary Elements\",\"authors\":\"Yechun Wang, Xinnan Wang\",\"doi\":\"10.1115/ajkfluids2019-5137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A plethora of studies have investigated the motion of a liquid droplet in the vicinity of a smooth surface, incurred by shear flow, parabolic flow or gravity. However, there are few studies that consider the roughness of the surface that could affect the droplet motion. In this study, we employ a 3D spectral boundary element method for interfacial dynamics to examine the droplet translation, migration, and deformation in the vicinity of a rough surface due to shear flow. The roughness feature of the surface is comparable to the size of the droplet and is simulated with sinusoidal functions. Topologies of epoxy coating surfaces are also considered in the computations. The roughness and profile of the coating surface is obtained by atomic force microscopy. The computational results show that the surface roughness affects significantly the behavior of a deformable droplet near the surface, including its deformation and migration speed. In return, the dynamics of the droplet also influences the stress distribution on the rough surface. The results of this study could provide theoretical foundation in the prediction of particle induced erosion corrosion of organic coatings.\",\"PeriodicalId\":346736,\"journal\":{\"name\":\"Volume 2: Computational Fluid Dynamics\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computational Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大量的研究调查了液滴在光滑表面附近由剪切流、抛物流或重力引起的运动。然而,很少有研究考虑到表面的粗糙度可能会影响液滴的运动。在这项研究中,我们采用三维光谱边界元方法研究界面动力学,以研究由于剪切流动而在粗糙表面附近的液滴平移,迁移和变形。表面的粗糙度特征与液滴的大小相当,并使用正弦函数进行模拟。计算中还考虑了环氧涂层表面的拓扑结构。用原子力显微镜测量了涂层表面的粗糙度和轮廓。计算结果表明,表面粗糙度对可变形液滴在表面附近的变形和迁移速度有显著影响。反过来,液滴的动力学也会影响粗糙表面的应力分布。研究结果可为有机涂层颗粒侵蚀腐蚀的预测提供理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational Studies of Droplet Motion Near a Rough Surface via 3D Spectral Boundary Elements
A plethora of studies have investigated the motion of a liquid droplet in the vicinity of a smooth surface, incurred by shear flow, parabolic flow or gravity. However, there are few studies that consider the roughness of the surface that could affect the droplet motion. In this study, we employ a 3D spectral boundary element method for interfacial dynamics to examine the droplet translation, migration, and deformation in the vicinity of a rough surface due to shear flow. The roughness feature of the surface is comparable to the size of the droplet and is simulated with sinusoidal functions. Topologies of epoxy coating surfaces are also considered in the computations. The roughness and profile of the coating surface is obtained by atomic force microscopy. The computational results show that the surface roughness affects significantly the behavior of a deformable droplet near the surface, including its deformation and migration speed. In return, the dynamics of the droplet also influences the stress distribution on the rough surface. The results of this study could provide theoretical foundation in the prediction of particle induced erosion corrosion of organic coatings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信