{"title":"扩展决策树的可学习性","authors":"Tapio Elomaa","doi":"10.1109/TAI.1991.167034","DOIUrl":null,"url":null,"abstract":"The author concentrates on B. Natarajan's (1991) framework for learning classes of total functions of discrete domains. A. Ehrenfeucht and D. Haussler (1989) have shown that a subclass of decision trees is learnable in the sense defined by L. Valiant (1984). The author generalizes their definitions to m-ary domains and shows that the learnability of restricted decision tree classifiers carries over to the extended model.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"140 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extending the learnability of decision trees\",\"authors\":\"Tapio Elomaa\",\"doi\":\"10.1109/TAI.1991.167034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The author concentrates on B. Natarajan's (1991) framework for learning classes of total functions of discrete domains. A. Ehrenfeucht and D. Haussler (1989) have shown that a subclass of decision trees is learnable in the sense defined by L. Valiant (1984). The author generalizes their definitions to m-ary domains and shows that the learnability of restricted decision tree classifiers carries over to the extended model.<<ETX>>\",\"PeriodicalId\":371778,\"journal\":{\"name\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"volume\":\"140 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1991.167034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The author concentrates on B. Natarajan's (1991) framework for learning classes of total functions of discrete domains. A. Ehrenfeucht and D. Haussler (1989) have shown that a subclass of decision trees is learnable in the sense defined by L. Valiant (1984). The author generalizes their definitions to m-ary domains and shows that the learnability of restricted decision tree classifiers carries over to the extended model.<>