用多元线性回归模型估计贸易差额

Sarimah Omar Gan, Sabri Ahmad
{"title":"用多元线性回归模型估计贸易差额","authors":"Sarimah Omar Gan, Sabri Ahmad","doi":"10.51200/lbibf.v16i.1642","DOIUrl":null,"url":null,"abstract":"This study aims to evaluate the performance of multiple linear regression in estimating trade balance, so that a regression model for estimating the trade balance can be developed based on the important variables that have been identified. The performance of four regression methods including enter, stepwise regression, backward deletion, and forward selection is measured by mean absolute error, standard deviation, and Pearson correlation at the validation stage. The study concludes that multiple linear regression model developed by stepwise method is the best model for the trade balance estimation. The model considers the following six significant variables: Exports of palm oil, imports of tubes, pipes, and fittings of iron or steel, exports of crude petroleum, imports of petroleum products, exports of plywood plain, and imports of rice. The regression model achieves a moderate value of model estimated accuracy (76.10%), mean absolute error (0.257), standard deviation (0.308), and linear correlation (0.851).","PeriodicalId":163324,"journal":{"name":"Labuan Bulletin of International Business and Finance (LBIBF)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ESTIMATION OF TRADE BALANCE USING MULTIPLE LINEAR REGRESSION MODEL\",\"authors\":\"Sarimah Omar Gan, Sabri Ahmad\",\"doi\":\"10.51200/lbibf.v16i.1642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to evaluate the performance of multiple linear regression in estimating trade balance, so that a regression model for estimating the trade balance can be developed based on the important variables that have been identified. The performance of four regression methods including enter, stepwise regression, backward deletion, and forward selection is measured by mean absolute error, standard deviation, and Pearson correlation at the validation stage. The study concludes that multiple linear regression model developed by stepwise method is the best model for the trade balance estimation. The model considers the following six significant variables: Exports of palm oil, imports of tubes, pipes, and fittings of iron or steel, exports of crude petroleum, imports of petroleum products, exports of plywood plain, and imports of rice. The regression model achieves a moderate value of model estimated accuracy (76.10%), mean absolute error (0.257), standard deviation (0.308), and linear correlation (0.851).\",\"PeriodicalId\":163324,\"journal\":{\"name\":\"Labuan Bulletin of International Business and Finance (LBIBF)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Labuan Bulletin of International Business and Finance (LBIBF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51200/lbibf.v16i.1642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Labuan Bulletin of International Business and Finance (LBIBF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51200/lbibf.v16i.1642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在评估多元线性回归在贸易平衡估计中的表现,以便根据已识别的重要变量建立贸易平衡估计的回归模型。通过验证阶段的平均绝对误差、标准差和Pearson相关性来衡量输入、逐步回归、向后删除和正向选择四种回归方法的性能。研究表明,采用逐步回归方法建立的多元线性回归模型是估算贸易差额的最佳模型。该模型考虑了以下6个重要变量:棕榈油出口、钢铁管材和配件进口、原油出口、石油产品进口、胶合板出口和大米进口。回归模型的模型估计精度(76.10%)、平均绝对误差(0.257)、标准差(0.308)和线性相关性(0.851)均达到中等值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ESTIMATION OF TRADE BALANCE USING MULTIPLE LINEAR REGRESSION MODEL
This study aims to evaluate the performance of multiple linear regression in estimating trade balance, so that a regression model for estimating the trade balance can be developed based on the important variables that have been identified. The performance of four regression methods including enter, stepwise regression, backward deletion, and forward selection is measured by mean absolute error, standard deviation, and Pearson correlation at the validation stage. The study concludes that multiple linear regression model developed by stepwise method is the best model for the trade balance estimation. The model considers the following six significant variables: Exports of palm oil, imports of tubes, pipes, and fittings of iron or steel, exports of crude petroleum, imports of petroleum products, exports of plywood plain, and imports of rice. The regression model achieves a moderate value of model estimated accuracy (76.10%), mean absolute error (0.257), standard deviation (0.308), and linear correlation (0.851).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信