不同CNN编码器用于单目深度预测的比较研究

Mohamed Aladem, Sumanth Chennupati, Zaid A. El-Shair, S. Rawashdeh
{"title":"不同CNN编码器用于单目深度预测的比较研究","authors":"Mohamed Aladem, Sumanth Chennupati, Zaid A. El-Shair, S. Rawashdeh","doi":"10.1109/NAECON46414.2019.9057857","DOIUrl":null,"url":null,"abstract":"Depth estimation of an observed scene is an important task for many domains such as mobile robotics, autonomous driving, and augmented reality. Traditionally, specialized sensors such as stereo cameras and structured light (RGB-D) ones are used to obtain depth along with color information of the environment. However, extending typical monocular cameras with the ability to infer depth information is an attractive solution. In this paper, we will demonstrate a Convolutional Neural Network (CNN) in an encoder-decoder architecture to perform monocular depth prediction. Additionally, we will evaluate and compare different CNN encoders’ performance.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Comparative Study of Different CNN Encoders for Monocular Depth Prediction\",\"authors\":\"Mohamed Aladem, Sumanth Chennupati, Zaid A. El-Shair, S. Rawashdeh\",\"doi\":\"10.1109/NAECON46414.2019.9057857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Depth estimation of an observed scene is an important task for many domains such as mobile robotics, autonomous driving, and augmented reality. Traditionally, specialized sensors such as stereo cameras and structured light (RGB-D) ones are used to obtain depth along with color information of the environment. However, extending typical monocular cameras with the ability to infer depth information is an attractive solution. In this paper, we will demonstrate a Convolutional Neural Network (CNN) in an encoder-decoder architecture to perform monocular depth prediction. Additionally, we will evaluate and compare different CNN encoders’ performance.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9057857\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在移动机器人、自动驾驶和增强现实等许多领域,对观察场景的深度估计是一项重要的任务。传统上,专门的传感器,如立体摄像机和结构光(RGB-D)被用来获取深度和环境的颜色信息。然而,扩展典型的单目相机,使其具有推断深度信息的能力是一个有吸引力的解决方案。在本文中,我们将演示卷积神经网络(CNN)在编码器-解码器架构中执行单目深度预测。此外,我们将评估和比较不同的CNN编码器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Comparative Study of Different CNN Encoders for Monocular Depth Prediction
Depth estimation of an observed scene is an important task for many domains such as mobile robotics, autonomous driving, and augmented reality. Traditionally, specialized sensors such as stereo cameras and structured light (RGB-D) ones are used to obtain depth along with color information of the environment. However, extending typical monocular cameras with the ability to infer depth information is an attractive solution. In this paper, we will demonstrate a Convolutional Neural Network (CNN) in an encoder-decoder architecture to perform monocular depth prediction. Additionally, we will evaluate and compare different CNN encoders’ performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信