S. Salem Hesari, D. Henke, V. Reshetov, B. Veidt, A. Seyfollahi, F. Jiang, L. Knee
{"title":"ngVLA Band-5 NRC q波段接收机的设计与分析","authors":"S. Salem Hesari, D. Henke, V. Reshetov, B. Veidt, A. Seyfollahi, F. Jiang, L. Knee","doi":"10.1117/12.2627870","DOIUrl":null,"url":null,"abstract":"The radio instrumentation team (RIT) at NRC’s (National Research Council Canada) Herzberg astronomy and astrophysics research center (HAA) is currently developing a dual-linear polarization, single-feed Q-band cryogenic radio astronomy receiver to develop and demonstrate important technologies needed for front-end development for the next generation very large array (ngVLA) project lead by the National Radio Astronomy Observatory (NRAO). The specific target is the ngVLA band-5 receiver, which covers the frequency range 30.5–50.5 GHz. It also serves as a technology demonstrator for component development for ngVLA bands-3, 4, and 6. The Q-band receiver system is designed to achieve a receiver noise temperature of less than 20 K over 70% of the bandwidth and better than 24 K over the complete operating bandwidth, and is compliant with the current ngVLA Band-5 receiver requirement. The receiver system consists of a cryostat with a cooled feed horn, a turnstile OMT (orthomode transducer) plus two noise couplers for calibration, two cryogenic mHEMT low noise amplifiers with noise temperature lower than 14 K, IR filters, and a vacuum window for low-loss transmission of electromagnetic fields into the cryostat.","PeriodicalId":137463,"journal":{"name":"Astronomical Telescopes + Instrumentation","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of the NRC Q-band receiver for ngVLA Band-5\",\"authors\":\"S. Salem Hesari, D. Henke, V. Reshetov, B. Veidt, A. Seyfollahi, F. Jiang, L. Knee\",\"doi\":\"10.1117/12.2627870\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The radio instrumentation team (RIT) at NRC’s (National Research Council Canada) Herzberg astronomy and astrophysics research center (HAA) is currently developing a dual-linear polarization, single-feed Q-band cryogenic radio astronomy receiver to develop and demonstrate important technologies needed for front-end development for the next generation very large array (ngVLA) project lead by the National Radio Astronomy Observatory (NRAO). The specific target is the ngVLA band-5 receiver, which covers the frequency range 30.5–50.5 GHz. It also serves as a technology demonstrator for component development for ngVLA bands-3, 4, and 6. The Q-band receiver system is designed to achieve a receiver noise temperature of less than 20 K over 70% of the bandwidth and better than 24 K over the complete operating bandwidth, and is compliant with the current ngVLA Band-5 receiver requirement. The receiver system consists of a cryostat with a cooled feed horn, a turnstile OMT (orthomode transducer) plus two noise couplers for calibration, two cryogenic mHEMT low noise amplifiers with noise temperature lower than 14 K, IR filters, and a vacuum window for low-loss transmission of electromagnetic fields into the cryostat.\",\"PeriodicalId\":137463,\"journal\":{\"name\":\"Astronomical Telescopes + Instrumentation\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astronomical Telescopes + Instrumentation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2627870\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical Telescopes + Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2627870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Design and analysis of the NRC Q-band receiver for ngVLA Band-5
The radio instrumentation team (RIT) at NRC’s (National Research Council Canada) Herzberg astronomy and astrophysics research center (HAA) is currently developing a dual-linear polarization, single-feed Q-band cryogenic radio astronomy receiver to develop and demonstrate important technologies needed for front-end development for the next generation very large array (ngVLA) project lead by the National Radio Astronomy Observatory (NRAO). The specific target is the ngVLA band-5 receiver, which covers the frequency range 30.5–50.5 GHz. It also serves as a technology demonstrator for component development for ngVLA bands-3, 4, and 6. The Q-band receiver system is designed to achieve a receiver noise temperature of less than 20 K over 70% of the bandwidth and better than 24 K over the complete operating bandwidth, and is compliant with the current ngVLA Band-5 receiver requirement. The receiver system consists of a cryostat with a cooled feed horn, a turnstile OMT (orthomode transducer) plus two noise couplers for calibration, two cryogenic mHEMT low noise amplifiers with noise temperature lower than 14 K, IR filters, and a vacuum window for low-loss transmission of electromagnetic fields into the cryostat.