基于内容的模糊支持向量机图像语义索引

Jianming Li, Shuguang Huang, R. He, Kunming Qian
{"title":"基于内容的模糊支持向量机图像语义索引","authors":"Jianming Li, Shuguang Huang, R. He, Kunming Qian","doi":"10.1109/CCPR.2008.35","DOIUrl":null,"url":null,"abstract":"With the increasing amount of multimedia data, content-based image retrieval attracts many researchers of various fields in an effort to automate data analysis and indexing. In this paper, we propose a content-based semantic indexing method which annotates images automatically using concepts and textual description. In order to bridge the \"semantic gap\" between the low-level descriptors and the high-level semantic concepts of an image, we introduce a 3-level pyramid and combine the color, texture and edge features for each level. Fuzzy support vector machine (FSVM) is employed for building the concept model and calculates the likelihood of an image to a model. We index the images with concepts according to the likelihood between an image and the concept model. Experiments show that our method has good accuracy in semantic indexing of images.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines\",\"authors\":\"Jianming Li, Shuguang Huang, R. He, Kunming Qian\",\"doi\":\"10.1109/CCPR.2008.35\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increasing amount of multimedia data, content-based image retrieval attracts many researchers of various fields in an effort to automate data analysis and indexing. In this paper, we propose a content-based semantic indexing method which annotates images automatically using concepts and textual description. In order to bridge the \\\"semantic gap\\\" between the low-level descriptors and the high-level semantic concepts of an image, we introduce a 3-level pyramid and combine the color, texture and edge features for each level. Fuzzy support vector machine (FSVM) is employed for building the concept model and calculates the likelihood of an image to a model. We index the images with concepts according to the likelihood between an image and the concept model. Experiments show that our method has good accuracy in semantic indexing of images.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.35\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

随着多媒体数据量的不断增加,基于内容的图像检索在实现数据分析和索引自动化方面受到了各领域研究者的广泛关注。本文提出了一种基于内容的语义索引方法,利用概念和文本描述对图像进行自动标注。为了弥合图像的低级描述符和高级语义概念之间的“语义鸿沟”,我们引入了一个3层金字塔,并将每层的颜色、纹理和边缘特征结合起来。采用模糊支持向量机(FSVM)建立概念模型,计算图像与模型的似然度。我们根据图像与概念模型之间的似然度对带有概念的图像进行索引。实验表明,该方法对图像的语义索引有较好的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines
With the increasing amount of multimedia data, content-based image retrieval attracts many researchers of various fields in an effort to automate data analysis and indexing. In this paper, we propose a content-based semantic indexing method which annotates images automatically using concepts and textual description. In order to bridge the "semantic gap" between the low-level descriptors and the high-level semantic concepts of an image, we introduce a 3-level pyramid and combine the color, texture and edge features for each level. Fuzzy support vector machine (FSVM) is employed for building the concept model and calculates the likelihood of an image to a model. We index the images with concepts according to the likelihood between an image and the concept model. Experiments show that our method has good accuracy in semantic indexing of images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信