基于概率分布距离的简单投影发现生物医学知识库中的数据源稳定性模式

Pablo Ferri Borreda, C. Sáez, J. M. García-Gómez
{"title":"基于概率分布距离的简单投影发现生物医学知识库中的数据源稳定性模式","authors":"Pablo Ferri Borreda, C. Sáez, J. M. García-Gómez","doi":"10.1109/CBMS.2017.153","DOIUrl":null,"url":null,"abstract":"The degree of homogeneity of statistical distributions among data sources is a critical issue when reusing data of Integrated Data Repositories (IDR). Evaluating this data source stability is of utmost importance in order to ensure a confident data reuse. This work tackles the task of discovering and classifying patterns among the statistical distributions of multiple sources in IDRs, by means of a novel approach based on simplicial projections from probability distribution distances, combined with Density-based spatial clustering of applications with noise (DBSCAN). The results on the evaluated 20 public repositories support the existence of four main data source stability patterns in biomedical repositories: the global stability pattern (GSP), the local stability pattern (LSP), the sparse stability pattern (SSP) and the instability pattern (IP).","PeriodicalId":141105,"journal":{"name":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovering Data Source Stability Patterns in Biomedical Repositories Based on Simplicial Projections from Probability Distribution Distances\",\"authors\":\"Pablo Ferri Borreda, C. Sáez, J. M. García-Gómez\",\"doi\":\"10.1109/CBMS.2017.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The degree of homogeneity of statistical distributions among data sources is a critical issue when reusing data of Integrated Data Repositories (IDR). Evaluating this data source stability is of utmost importance in order to ensure a confident data reuse. This work tackles the task of discovering and classifying patterns among the statistical distributions of multiple sources in IDRs, by means of a novel approach based on simplicial projections from probability distribution distances, combined with Density-based spatial clustering of applications with noise (DBSCAN). The results on the evaluated 20 public repositories support the existence of four main data source stability patterns in biomedical repositories: the global stability pattern (GSP), the local stability pattern (LSP), the sparse stability pattern (SSP) and the instability pattern (IP).\",\"PeriodicalId\":141105,\"journal\":{\"name\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2017.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 30th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2017.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在集成数据存储库(IDR)中重用数据时,数据源之间统计分布的同质性是一个关键问题。为了确保可靠的数据重用,评估该数据源的稳定性至关重要。这项工作通过一种基于概率分布距离的简单投影的新方法,结合基于密度的带噪声应用空间聚类(DBSCAN),解决了在idr中多个源的统计分布中发现和分类模式的任务。结果表明,生物医学知识库中存在全局稳定模式(GSP)、局部稳定模式(LSP)、稀疏稳定模式(SSP)和不稳定模式(IP)四种主要的数据源稳定性模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discovering Data Source Stability Patterns in Biomedical Repositories Based on Simplicial Projections from Probability Distribution Distances
The degree of homogeneity of statistical distributions among data sources is a critical issue when reusing data of Integrated Data Repositories (IDR). Evaluating this data source stability is of utmost importance in order to ensure a confident data reuse. This work tackles the task of discovering and classifying patterns among the statistical distributions of multiple sources in IDRs, by means of a novel approach based on simplicial projections from probability distribution distances, combined with Density-based spatial clustering of applications with noise (DBSCAN). The results on the evaluated 20 public repositories support the existence of four main data source stability patterns in biomedical repositories: the global stability pattern (GSP), the local stability pattern (LSP), the sparse stability pattern (SSP) and the instability pattern (IP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信