{"title":"耦合多帧超分辨扩散运动模型和全变分正则化","authors":"Mehran Ebrahimi, E. Vrscay, Anne L. Martel","doi":"10.1109/LNLA.2009.5278403","DOIUrl":null,"url":null,"abstract":"The problem of recovering a high-resolution image from a set of distorted (e.g., warped, blurred, noisy) and low-resolution images is known as super-resolution. Accurate motion estimation from low-resolution measurements is a fundamental challenge of the super-resolution problem. Some recent promising advances in this area have been focused on coupling or combing the super-resolution reconstruction and the motion estimation. However, the existing approaches are limited to parametric motion models, e.g., affine transformations. In this paper, we shall address the coupled super-resolution problem with a non-parametric motion model. We then consider a variational formulation of the problem and use a PDE-approach to construct a numerical scheme for its solution. In this paper, diffusion regularization is used for the motion model and total variation regularization for the super-resolved image.","PeriodicalId":231766,"journal":{"name":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coupled multi-frame super-resolution with diffusive motion model and total variation regularization\",\"authors\":\"Mehran Ebrahimi, E. Vrscay, Anne L. Martel\",\"doi\":\"10.1109/LNLA.2009.5278403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of recovering a high-resolution image from a set of distorted (e.g., warped, blurred, noisy) and low-resolution images is known as super-resolution. Accurate motion estimation from low-resolution measurements is a fundamental challenge of the super-resolution problem. Some recent promising advances in this area have been focused on coupling or combing the super-resolution reconstruction and the motion estimation. However, the existing approaches are limited to parametric motion models, e.g., affine transformations. In this paper, we shall address the coupled super-resolution problem with a non-parametric motion model. We then consider a variational formulation of the problem and use a PDE-approach to construct a numerical scheme for its solution. In this paper, diffusion regularization is used for the motion model and total variation regularization for the super-resolved image.\",\"PeriodicalId\":231766,\"journal\":{\"name\":\"2009 International Workshop on Local and Non-Local Approximation in Image Processing\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Local and Non-Local Approximation in Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LNLA.2009.5278403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Local and Non-Local Approximation in Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LNLA.2009.5278403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Coupled multi-frame super-resolution with diffusive motion model and total variation regularization
The problem of recovering a high-resolution image from a set of distorted (e.g., warped, blurred, noisy) and low-resolution images is known as super-resolution. Accurate motion estimation from low-resolution measurements is a fundamental challenge of the super-resolution problem. Some recent promising advances in this area have been focused on coupling or combing the super-resolution reconstruction and the motion estimation. However, the existing approaches are limited to parametric motion models, e.g., affine transformations. In this paper, we shall address the coupled super-resolution problem with a non-parametric motion model. We then consider a variational formulation of the problem and use a PDE-approach to construct a numerical scheme for its solution. In this paper, diffusion regularization is used for the motion model and total variation regularization for the super-resolved image.