一种多变量多目标预测控制器

F. B. Aicha, F. Bouani, M. Ksouri
{"title":"一种多变量多目标预测控制器","authors":"F. B. Aicha, F. Bouani, M. Ksouri","doi":"10.2478/amcs-2013-0004","DOIUrl":null,"url":null,"abstract":"Predictive control of MIMO processes is a challenging problem which requires the specification of a large number of tuning parameters (the prediction horizon, the control horizon and the cost weighting factor). In this context, the present paper compares two strategies to design a supervisor of the Multivariable Generalized Predictive Controller (MGPC), based on multiobjective optimization. Thus, the purpose of this work is the automatic adjustment of the MGPC synthesis by simultaneously minimizing a set of closed loop performances (the overshoot and the settling time for each output of the MIMO system). First, we adopt the Weighted Sum Method (WSM), which is an aggregative method combined with a Genetic Algorithm (GA) used to minimize a single criterion generated by the WSM. Second, we use the Non- Dominated Sorting Genetic Algorithm II (NSGA-II) as a Pareto method and we compare the results of both the methods. The performance of the two strategies in the adjustment of multivariable predictive control is illustrated by a simulation example. The simulation results confirm that a multiobjective, Pareto-based GA search yields a better performance than a single objective GA.","PeriodicalId":253470,"journal":{"name":"International Journal of Applied Mathematics and Computer Sciences","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"A multivariable multiobjective predictive controller\",\"authors\":\"F. B. Aicha, F. Bouani, M. Ksouri\",\"doi\":\"10.2478/amcs-2013-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predictive control of MIMO processes is a challenging problem which requires the specification of a large number of tuning parameters (the prediction horizon, the control horizon and the cost weighting factor). In this context, the present paper compares two strategies to design a supervisor of the Multivariable Generalized Predictive Controller (MGPC), based on multiobjective optimization. Thus, the purpose of this work is the automatic adjustment of the MGPC synthesis by simultaneously minimizing a set of closed loop performances (the overshoot and the settling time for each output of the MIMO system). First, we adopt the Weighted Sum Method (WSM), which is an aggregative method combined with a Genetic Algorithm (GA) used to minimize a single criterion generated by the WSM. Second, we use the Non- Dominated Sorting Genetic Algorithm II (NSGA-II) as a Pareto method and we compare the results of both the methods. The performance of the two strategies in the adjustment of multivariable predictive control is illustrated by a simulation example. The simulation results confirm that a multiobjective, Pareto-based GA search yields a better performance than a single objective GA.\",\"PeriodicalId\":253470,\"journal\":{\"name\":\"International Journal of Applied Mathematics and Computer Sciences\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mathematics and Computer Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/amcs-2013-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mathematics and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/amcs-2013-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

MIMO过程的预测控制是一个具有挑战性的问题,它需要指定大量的调谐参数(预测水平、控制水平和成本加权因子)。在此背景下,本文比较了基于多目标优化的多变量广义预测控制器(MGPC)监督器的两种设计策略。因此,这项工作的目的是通过同时最小化一组闭环性能(MIMO系统的每个输出的超调和稳定时间)来自动调整MGPC合成。首先,我们采用加权和方法(WSM),该方法是一种结合遗传算法(GA)的聚合方法,用于最小化由WSM生成的单个准则。其次,我们使用非支配排序遗传算法II (NSGA-II)作为Pareto方法,并比较了两种方法的结果。通过仿真实例说明了这两种策略在多变量预测控制调整中的性能。仿真结果表明,基于pareto的多目标遗传算法比单目标遗传算法具有更好的搜索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A multivariable multiobjective predictive controller
Predictive control of MIMO processes is a challenging problem which requires the specification of a large number of tuning parameters (the prediction horizon, the control horizon and the cost weighting factor). In this context, the present paper compares two strategies to design a supervisor of the Multivariable Generalized Predictive Controller (MGPC), based on multiobjective optimization. Thus, the purpose of this work is the automatic adjustment of the MGPC synthesis by simultaneously minimizing a set of closed loop performances (the overshoot and the settling time for each output of the MIMO system). First, we adopt the Weighted Sum Method (WSM), which is an aggregative method combined with a Genetic Algorithm (GA) used to minimize a single criterion generated by the WSM. Second, we use the Non- Dominated Sorting Genetic Algorithm II (NSGA-II) as a Pareto method and we compare the results of both the methods. The performance of the two strategies in the adjustment of multivariable predictive control is illustrated by a simulation example. The simulation results confirm that a multiobjective, Pareto-based GA search yields a better performance than a single objective GA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信