基于离散模型的预测控制在暖通空调系统中的节能作用

P. Ferreira, Sergio Silva, A. Ruano
{"title":"基于离散模型的预测控制在暖通空调系统中的节能作用","authors":"P. Ferreira, Sergio Silva, A. Ruano","doi":"10.1109/IJCNN.2012.6252538","DOIUrl":null,"url":null,"abstract":"The paper addresses the problem of controlling an heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identified by means of a multi-objective genetic algorithm; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, and experimental results obtained within a classroom will be presented, demonstrating the feasibility and performance of the approach. Finally the energy savings resulting from the application of the method are estimated.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Energy savings in HVAC systems using discrete model-based predictive control\",\"authors\":\"P. Ferreira, Sergio Silva, A. Ruano\",\"doi\":\"10.1109/IJCNN.2012.6252538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses the problem of controlling an heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identified by means of a multi-objective genetic algorithm; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, and experimental results obtained within a classroom will be presented, demonstrating the feasibility and performance of the approach. Finally the energy savings resulting from the application of the method are estimated.\",\"PeriodicalId\":287844,\"journal\":{\"name\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2012 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2012.6252538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文解决了控制供暖通风和空调系统的问题,目的是达到理想的热舒适水平和节能。该配方使用热舒适作为限制,并尽量减少能源消耗,以符合它。这导致了热舒适的维护和能源的最小化,这在大多数操作条件下是相互冲突的目标,需要某种优化方法来找到适当的解决方案。本文提出了一种基于离散模型的预测控制方法。它由三个主要部分组成:由多目标遗传算法识别的径向基函数神经网络实现的预测模型;将优化成本函数,以尽量减少能源消耗和提供足够的热舒适;最后是优化方法,在这种情况下是离散分支定界法。将描述每个组成部分,并在课堂上展示实验结果,展示该方法的可行性和性能。最后对该方法的应用所带来的节能效果进行了估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy savings in HVAC systems using discrete model-based predictive control
The paper addresses the problem of controlling an heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identified by means of a multi-objective genetic algorithm; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, and experimental results obtained within a classroom will be presented, demonstrating the feasibility and performance of the approach. Finally the energy savings resulting from the application of the method are estimated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信