聚类效用:生物序列聚类的新度量

Jason Lee, Sun Kim
{"title":"聚类效用:生物序列聚类的新度量","authors":"Jason Lee, Sun Kim","doi":"10.1109/CSBW.2005.38","DOIUrl":null,"url":null,"abstract":"We propose cluster utility (CU), a metric that is based on consideration of similarity within a cluster and difference between clusters without metric space assumption. CU showed a very high correlation with the quality index. CU scales very well with data size and its strong correlation with quality index was nearly invariable regardless of data size change. CU can be used in two ways: to guide sequence clustering algorithms and to evaluate clustering results.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cluster utility: a new metric for clustering biological sequences\",\"authors\":\"Jason Lee, Sun Kim\",\"doi\":\"10.1109/CSBW.2005.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose cluster utility (CU), a metric that is based on consideration of similarity within a cluster and difference between clusters without metric space assumption. CU showed a very high correlation with the quality index. CU scales very well with data size and its strong correlation with quality index was nearly invariable regardless of data size change. CU can be used in two ways: to guide sequence clustering algorithms and to evaluate clustering results.\",\"PeriodicalId\":123531,\"journal\":{\"name\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSBW.2005.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了聚类效用(CU),这是一种基于考虑聚类内部相似性和聚类之间差异的度量,没有度量空间假设。CU与质量指标有很高的相关性。CU可以很好地扩展数据大小,并且无论数据大小如何变化,其与质量指数的强相关性几乎是不变的。CU可以用于两种方式:指导序列聚类算法和评估聚类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cluster utility: a new metric for clustering biological sequences
We propose cluster utility (CU), a metric that is based on consideration of similarity within a cluster and difference between clusters without metric space assumption. CU showed a very high correlation with the quality index. CU scales very well with data size and its strong correlation with quality index was nearly invariable regardless of data size change. CU can be used in two ways: to guide sequence clustering algorithms and to evaluate clustering results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信