基于改进mras的移动机器人底盘驱动系统惯性估计算法

Chengbo Yang, Bao Song, Xiaoqi Tang, Yuanlong Xie, Xiangdong Zhou
{"title":"基于改进mras的移动机器人底盘驱动系统惯性估计算法","authors":"Chengbo Yang, Bao Song, Xiaoqi Tang, Yuanlong Xie, Xiangdong Zhou","doi":"10.1109/TENCON50793.2020.9293946","DOIUrl":null,"url":null,"abstract":"Permanent magnet synchronous motor (PMSM) is typically used to drive the mobile robotic chassis system. In this paper, a modified model reference adaptive system (MRAS) based algorithm is proposed to estimate the moment of inertia of the PMSM drive system. First, an extended state observer (ESO) technique is introduced to reconstruct the adjustable model so that the adverse effects of nonlinear dynamics on its accuracy are removed. Thus, the estimation precision of the moment of inertia can be enhanced. Then, a novel sliding-mode adaptive law is designed to replace the PI adaptive law, which avoids complicated PI parameters adjustment and improves the dynamic estimation performance. The existence and the reachability of the sliding mode are proved with aiding from the Lyapunov function. Experimental results verify the effectiveness of the proposed method.","PeriodicalId":283131,"journal":{"name":"2020 IEEE REGION 10 CONFERENCE (TENCON)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified MRAS-Based Algorithm for Inertia Estimation of Mobile Robotic Chassis Drive Systems\",\"authors\":\"Chengbo Yang, Bao Song, Xiaoqi Tang, Yuanlong Xie, Xiangdong Zhou\",\"doi\":\"10.1109/TENCON50793.2020.9293946\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permanent magnet synchronous motor (PMSM) is typically used to drive the mobile robotic chassis system. In this paper, a modified model reference adaptive system (MRAS) based algorithm is proposed to estimate the moment of inertia of the PMSM drive system. First, an extended state observer (ESO) technique is introduced to reconstruct the adjustable model so that the adverse effects of nonlinear dynamics on its accuracy are removed. Thus, the estimation precision of the moment of inertia can be enhanced. Then, a novel sliding-mode adaptive law is designed to replace the PI adaptive law, which avoids complicated PI parameters adjustment and improves the dynamic estimation performance. The existence and the reachability of the sliding mode are proved with aiding from the Lyapunov function. Experimental results verify the effectiveness of the proposed method.\",\"PeriodicalId\":283131,\"journal\":{\"name\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE REGION 10 CONFERENCE (TENCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TENCON50793.2020.9293946\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE REGION 10 CONFERENCE (TENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TENCON50793.2020.9293946","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

永磁同步电机(PMSM)是驱动移动机器人底盘系统的常用电机。提出了一种基于改进模型参考自适应系统(MRAS)的永磁同步电动机驱动系统转动惯量估计算法。首先,引入扩展状态观测器(ESO)技术重构可调模型,消除非线性动力学对模型精度的不利影响;这样可以提高惯性矩的估计精度。然后,设计了一种新的滑模自适应律来取代PI自适应律,避免了复杂的PI参数调整,提高了动态估计性能。利用李雅普诺夫函数证明了滑模的存在性和可达性。实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified MRAS-Based Algorithm for Inertia Estimation of Mobile Robotic Chassis Drive Systems
Permanent magnet synchronous motor (PMSM) is typically used to drive the mobile robotic chassis system. In this paper, a modified model reference adaptive system (MRAS) based algorithm is proposed to estimate the moment of inertia of the PMSM drive system. First, an extended state observer (ESO) technique is introduced to reconstruct the adjustable model so that the adverse effects of nonlinear dynamics on its accuracy are removed. Thus, the estimation precision of the moment of inertia can be enhanced. Then, a novel sliding-mode adaptive law is designed to replace the PI adaptive law, which avoids complicated PI parameters adjustment and improves the dynamic estimation performance. The existence and the reachability of the sliding mode are proved with aiding from the Lyapunov function. Experimental results verify the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信