有噪声的语音特征学习:稀疏卷积鲁棒非负矩阵分解

R. Fréin, S. Rickard
{"title":"有噪声的语音特征学习:稀疏卷积鲁棒非负矩阵分解","authors":"R. Fréin, S. Rickard","doi":"10.1109/ICDSP.2009.5201068","DOIUrl":null,"url":null,"abstract":"We introduce a non-negative matrix factorization technique which learns speech features with temporal extent in the presence of non-stationary noise. Our proposed technique, namely Sparse convolutive robust non-negative matrix factorization, is robust in the presence of noise due to our explicit treatment of noise as an interfering source in the factorization. We derive multiplicative update rules using the alpha divergence objective. We show that our proposed method yields superior performance to sparse convolutive non-negative matrix factorization in a feature learning task on noisy data and comparable results to dedicated speech enhancement techniques.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Learning speech features in the presence of noise: Sparse convolutive robust non-negative matrix factorization\",\"authors\":\"R. Fréin, S. Rickard\",\"doi\":\"10.1109/ICDSP.2009.5201068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a non-negative matrix factorization technique which learns speech features with temporal extent in the presence of non-stationary noise. Our proposed technique, namely Sparse convolutive robust non-negative matrix factorization, is robust in the presence of noise due to our explicit treatment of noise as an interfering source in the factorization. We derive multiplicative update rules using the alpha divergence objective. We show that our proposed method yields superior performance to sparse convolutive non-negative matrix factorization in a feature learning task on noisy data and comparable results to dedicated speech enhancement techniques.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"131 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文介绍了一种非负矩阵分解技术,该技术可以在非平稳噪声存在的情况下学习具有时间范围的语音特征。我们提出的技术,即稀疏卷积鲁棒非负矩阵分解,在存在噪声的情况下是鲁棒的,因为我们在分解过程中明确地将噪声作为干扰源处理。我们使用alpha散度目标导出乘法更新规则。我们表明,我们提出的方法在噪声数据的特征学习任务中比稀疏卷积非负矩阵分解具有更好的性能,并且与专用语音增强技术的结果相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning speech features in the presence of noise: Sparse convolutive robust non-negative matrix factorization
We introduce a non-negative matrix factorization technique which learns speech features with temporal extent in the presence of non-stationary noise. Our proposed technique, namely Sparse convolutive robust non-negative matrix factorization, is robust in the presence of noise due to our explicit treatment of noise as an interfering source in the factorization. We derive multiplicative update rules using the alpha divergence objective. We show that our proposed method yields superior performance to sparse convolutive non-negative matrix factorization in a feature learning task on noisy data and comparable results to dedicated speech enhancement techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信