基于灰度共生矩阵的文件片段分类

P. P. Pullaperuma, A. Dharmarathne
{"title":"基于灰度共生矩阵的文件片段分类","authors":"P. P. Pullaperuma, A. Dharmarathne","doi":"10.1109/DICTA.2013.6691534","DOIUrl":null,"url":null,"abstract":"Researches up to data have focused on using non texture based methods in addressing the problem of classifying the data types of file fragments. In this research we considered a file fragment as a 8 bit grayscale image and the Gray Level Co-Occurrence Matrix (GLCM) based method was used to extract textural features. Texture features for fragment dimensions 8 × 8, 16 × 16, 32 × 32 and 64 × 64 and gray level quantizations from 4 to 64 with step increments of 4 were explored. The K nearest neighbor classifier was used as the classifier and the optimal GLCM features for a particular gray level and fragment dimension were determined using Sequential Forward Selection (SFS) algorithm. On the classification of 7 data types, our novel approach reached a maximum overall accuracy of 86.86% in classifying 64 × 64 sized fragments with 12 gray levels.","PeriodicalId":231632,"journal":{"name":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Taxonomy of File Fragments Using Gray-Level Co-Occurrence Matrices\",\"authors\":\"P. P. Pullaperuma, A. Dharmarathne\",\"doi\":\"10.1109/DICTA.2013.6691534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Researches up to data have focused on using non texture based methods in addressing the problem of classifying the data types of file fragments. In this research we considered a file fragment as a 8 bit grayscale image and the Gray Level Co-Occurrence Matrix (GLCM) based method was used to extract textural features. Texture features for fragment dimensions 8 × 8, 16 × 16, 32 × 32 and 64 × 64 and gray level quantizations from 4 to 64 with step increments of 4 were explored. The K nearest neighbor classifier was used as the classifier and the optimal GLCM features for a particular gray level and fragment dimension were determined using Sequential Forward Selection (SFS) algorithm. On the classification of 7 data types, our novel approach reached a maximum overall accuracy of 86.86% in classifying 64 × 64 sized fragments with 12 gray levels.\",\"PeriodicalId\":231632,\"journal\":{\"name\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2013.6691534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2013.6691534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

数据方面的研究主要集中在使用非基于纹理的方法来解决文件片段数据类型的分类问题。在本研究中,我们将文件片段视为8位灰度图像,并使用基于灰度共生矩阵(GLCM)的方法提取纹理特征。分别探讨了8 × 8、16 × 16、32 × 32和64 × 64维度的纹理特征以及4 ~ 64步长增量为4的灰度量化。使用K近邻分类器作为分类器,并使用顺序前向选择(SFS)算法确定特定灰度和片段维数的最优GLCM特征。在7种数据类型的分类上,我们的方法对64 × 64大小、12个灰度级的碎片进行分类,总体准确率达到了86.86%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Taxonomy of File Fragments Using Gray-Level Co-Occurrence Matrices
Researches up to data have focused on using non texture based methods in addressing the problem of classifying the data types of file fragments. In this research we considered a file fragment as a 8 bit grayscale image and the Gray Level Co-Occurrence Matrix (GLCM) based method was used to extract textural features. Texture features for fragment dimensions 8 × 8, 16 × 16, 32 × 32 and 64 × 64 and gray level quantizations from 4 to 64 with step increments of 4 were explored. The K nearest neighbor classifier was used as the classifier and the optimal GLCM features for a particular gray level and fragment dimension were determined using Sequential Forward Selection (SFS) algorithm. On the classification of 7 data types, our novel approach reached a maximum overall accuracy of 86.86% in classifying 64 × 64 sized fragments with 12 gray levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信