{"title":"使用深度学习方法通过湍流介质成像","authors":"Lina Zhou, Xudong Chen, Wen Chen","doi":"10.1109/INDIN45582.2020.9442210","DOIUrl":null,"url":null,"abstract":"We present deep learning method that can be used to reconstruct high-quality objects through turbulent media mixed with water and milk. The objects are placed behind turbulent media, and a series of speckle patterns are correspondingly recorded. By using many pairs of the recorded speckle patterns and input object images, a designed convolutional neural network (CNN) is fully trained, and then enables the recorded speckle patterns to be processed in real time. The proposed method is promising for imaging through turbulent media, and it is also believed that the proposed method can be applicable in many areas, e.g., imaging and information optics (such as optical encoding).","PeriodicalId":185948,"journal":{"name":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging Through Turbulent Media Using Deep Learning Method\",\"authors\":\"Lina Zhou, Xudong Chen, Wen Chen\",\"doi\":\"10.1109/INDIN45582.2020.9442210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present deep learning method that can be used to reconstruct high-quality objects through turbulent media mixed with water and milk. The objects are placed behind turbulent media, and a series of speckle patterns are correspondingly recorded. By using many pairs of the recorded speckle patterns and input object images, a designed convolutional neural network (CNN) is fully trained, and then enables the recorded speckle patterns to be processed in real time. The proposed method is promising for imaging through turbulent media, and it is also believed that the proposed method can be applicable in many areas, e.g., imaging and information optics (such as optical encoding).\",\"PeriodicalId\":185948,\"journal\":{\"name\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN45582.2020.9442210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 18th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN45582.2020.9442210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Imaging Through Turbulent Media Using Deep Learning Method
We present deep learning method that can be used to reconstruct high-quality objects through turbulent media mixed with water and milk. The objects are placed behind turbulent media, and a series of speckle patterns are correspondingly recorded. By using many pairs of the recorded speckle patterns and input object images, a designed convolutional neural network (CNN) is fully trained, and then enables the recorded speckle patterns to be processed in real time. The proposed method is promising for imaging through turbulent media, and it is also believed that the proposed method can be applicable in many areas, e.g., imaging and information optics (such as optical encoding).