{"title":"量子统计力学","authors":"J. Sethna","doi":"10.1093/oso/9780198865247.003.0007","DOIUrl":null,"url":null,"abstract":"Quantum statistical mechanics governs metals, semiconductors, and neutron stars. Statistical mechanics spawned Planck’s invention of the quantum, and explains Bose condensation, superfluids, and superconductors. This chapter briefly describes these systems using mixed states, or more formally density matrices, and introducing the properties of bosons and fermions. We discuss in unusual detail how useful descriptions of metals and superfluids can be derived by ignoring the seemingly important interactions between their constituent electrons and atoms. Exercises explore how gregarious bosons lead to superfluids and lasers, how unsociable fermions explain transitions between white dwarfs, neutron stars, and black holes, how one calculates materials properties in semiconductors, insulators, and metals, and how statistical mechanics can explain the collapse of the quantum wavefunction during measurement.","PeriodicalId":218123,"journal":{"name":"Statistical Mechanics: Entropy, Order Parameters, and Complexity","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"712","resultStr":"{\"title\":\"Quantum statistical mechanics\",\"authors\":\"J. Sethna\",\"doi\":\"10.1093/oso/9780198865247.003.0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum statistical mechanics governs metals, semiconductors, and neutron stars. Statistical mechanics spawned Planck’s invention of the quantum, and explains Bose condensation, superfluids, and superconductors. This chapter briefly describes these systems using mixed states, or more formally density matrices, and introducing the properties of bosons and fermions. We discuss in unusual detail how useful descriptions of metals and superfluids can be derived by ignoring the seemingly important interactions between their constituent electrons and atoms. Exercises explore how gregarious bosons lead to superfluids and lasers, how unsociable fermions explain transitions between white dwarfs, neutron stars, and black holes, how one calculates materials properties in semiconductors, insulators, and metals, and how statistical mechanics can explain the collapse of the quantum wavefunction during measurement.\",\"PeriodicalId\":218123,\"journal\":{\"name\":\"Statistical Mechanics: Entropy, Order Parameters, and Complexity\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"712\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Mechanics: Entropy, Order Parameters, and Complexity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198865247.003.0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Mechanics: Entropy, Order Parameters, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198865247.003.0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantum statistical mechanics governs metals, semiconductors, and neutron stars. Statistical mechanics spawned Planck’s invention of the quantum, and explains Bose condensation, superfluids, and superconductors. This chapter briefly describes these systems using mixed states, or more formally density matrices, and introducing the properties of bosons and fermions. We discuss in unusual detail how useful descriptions of metals and superfluids can be derived by ignoring the seemingly important interactions between their constituent electrons and atoms. Exercises explore how gregarious bosons lead to superfluids and lasers, how unsociable fermions explain transitions between white dwarfs, neutron stars, and black holes, how one calculates materials properties in semiconductors, insulators, and metals, and how statistical mechanics can explain the collapse of the quantum wavefunction during measurement.