仿射格拉斯曼码的信息集与迭代编码

S. Ghorpade, Fernando L. Piñero
{"title":"仿射格拉斯曼码的信息集与迭代编码","authors":"S. Ghorpade, Fernando L. Piñero","doi":"10.1109/IWSDA.2015.7458398","DOIUrl":null,"url":null,"abstract":"We explicitly determine an information set for the affine Grassmann codes of an arbitrary level and then use it to describe a systematic encoder for these codes. In the case of affine Grassmann codes of full level, we use our explicit information set together with some known results concerning duals of affine Grassmann codes to describe an iterative encoding algorithm and also show that permutation decoding is possible up to a reasonable bound.","PeriodicalId":371829,"journal":{"name":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","volume":"193 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Information set and iterative encoding for Affine Grassmann codes\",\"authors\":\"S. Ghorpade, Fernando L. Piñero\",\"doi\":\"10.1109/IWSDA.2015.7458398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explicitly determine an information set for the affine Grassmann codes of an arbitrary level and then use it to describe a systematic encoder for these codes. In the case of affine Grassmann codes of full level, we use our explicit information set together with some known results concerning duals of affine Grassmann codes to describe an iterative encoding algorithm and also show that permutation decoding is possible up to a reasonable bound.\",\"PeriodicalId\":371829,\"journal\":{\"name\":\"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"volume\":\"193 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWSDA.2015.7458398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Seventh International Workshop on Signal Design and its Applications in Communications (IWSDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSDA.2015.7458398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们明确地确定了任意水平仿射格拉斯曼码的信息集,然后用它来描述这些码的系统编码器。在全能级仿射格拉斯曼码的情况下,我们利用我们的显式信息集和一些已知的关于仿射格拉斯曼码对偶的结果,描述了一种迭代编码算法,并证明了在一个合理的范围内,排列解码是可能的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Information set and iterative encoding for Affine Grassmann codes
We explicitly determine an information set for the affine Grassmann codes of an arbitrary level and then use it to describe a systematic encoder for these codes. In the case of affine Grassmann codes of full level, we use our explicit information set together with some known results concerning duals of affine Grassmann codes to describe an iterative encoding algorithm and also show that permutation decoding is possible up to a reasonable bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信