同一机器上临时任务的在线负载平衡

Y. Azar, L. Epstein
{"title":"同一机器上临时任务的在线负载平衡","authors":"Y. Azar, L. Epstein","doi":"10.1109/ISTCS.1997.595163","DOIUrl":null,"url":null,"abstract":"We prove an exact lower bound of 2-1/m on the competitive ratio of any deterministic algorithm for load balancing of temporary tasks on m identical machines. We also show a lower bound of 2-1/m for randomized algorithms for small m and 2-2/m+1 for general m. If in addition, we restrict the sequence to polynomial length, then the lower bound for randomized algorithms becomes 2-O(log log m/log m) for general m.","PeriodicalId":367160,"journal":{"name":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"On-line load balancing of temporary tasks on identical machines\",\"authors\":\"Y. Azar, L. Epstein\",\"doi\":\"10.1109/ISTCS.1997.595163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove an exact lower bound of 2-1/m on the competitive ratio of any deterministic algorithm for load balancing of temporary tasks on m identical machines. We also show a lower bound of 2-1/m for randomized algorithms for small m and 2-2/m+1 for general m. If in addition, we restrict the sequence to polynomial length, then the lower bound for randomized algorithms becomes 2-O(log log m/log m) for general m.\",\"PeriodicalId\":367160,\"journal\":{\"name\":\"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTCS.1997.595163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTCS.1997.595163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

我们证明了m台相同机器上临时任务负载平衡的任何确定性算法的竞争比的精确下界为2-1/m。我们还表明,对于小m,随机算法的下界为2-1/m,对于一般m,下界为2-2/m+1。此外,如果我们将序列限制为多项式长度,那么对于一般m,随机算法的下界为2-O(log log m/log m)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On-line load balancing of temporary tasks on identical machines
We prove an exact lower bound of 2-1/m on the competitive ratio of any deterministic algorithm for load balancing of temporary tasks on m identical machines. We also show a lower bound of 2-1/m for randomized algorithms for small m and 2-2/m+1 for general m. If in addition, we restrict the sequence to polynomial length, then the lower bound for randomized algorithms becomes 2-O(log log m/log m) for general m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信