基于可变决策水平的分支启发式算法

Zhonghe Du, Zhenming Song
{"title":"基于可变决策水平的分支启发式算法","authors":"Zhonghe Du, Zhenming Song","doi":"10.1109/ISKE.2017.8258776","DOIUrl":null,"url":null,"abstract":"Efficient branching heuristic is a key feature of modern SAT solvers. Firstly, this paper introduced VSIDS heuristic and VSIDS-based heuristics like EVSIDS and ACIDS. Based on VSIDS, a new heuristic termed DLBH that considers variable decision levels was proposed to promote the efficiency of variable selection process. Then, instances showed the comparison among EVSIDS, ACIDS and DLBH. Finally, experimental results indicated that MiniSat solver with DLBH outperforms solvers MiniSat with VSIDS and Glucose.","PeriodicalId":208009,"journal":{"name":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"357 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A branching heuristic based on variable decision levels\",\"authors\":\"Zhonghe Du, Zhenming Song\",\"doi\":\"10.1109/ISKE.2017.8258776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient branching heuristic is a key feature of modern SAT solvers. Firstly, this paper introduced VSIDS heuristic and VSIDS-based heuristics like EVSIDS and ACIDS. Based on VSIDS, a new heuristic termed DLBH that considers variable decision levels was proposed to promote the efficiency of variable selection process. Then, instances showed the comparison among EVSIDS, ACIDS and DLBH. Finally, experimental results indicated that MiniSat solver with DLBH outperforms solvers MiniSat with VSIDS and Glucose.\",\"PeriodicalId\":208009,\"journal\":{\"name\":\"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"357 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE.2017.8258776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE.2017.8258776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高效分支启发式是现代SAT求解器的一个重要特征。本文首先介绍了VSIDS启发式方法以及基于VSIDS的EVSIDS和ACIDS等启发式方法。为了提高变量选择过程的效率,在VSIDS的基础上,提出了一种考虑变量决策水平的启发式算法DLBH。然后,举例说明了EVSIDS、ACIDS和DLBH之间的比较。最后,实验结果表明,使用DLBH的MiniSat求解器优于使用VSIDS和Glucose的MiniSat求解器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A branching heuristic based on variable decision levels
Efficient branching heuristic is a key feature of modern SAT solvers. Firstly, this paper introduced VSIDS heuristic and VSIDS-based heuristics like EVSIDS and ACIDS. Based on VSIDS, a new heuristic termed DLBH that considers variable decision levels was proposed to promote the efficiency of variable selection process. Then, instances showed the comparison among EVSIDS, ACIDS and DLBH. Finally, experimental results indicated that MiniSat solver with DLBH outperforms solvers MiniSat with VSIDS and Glucose.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信