Igor Volkov, A. Kharin, Aleksei Dryakhlov, Evgeny Mirokhin, Konstantin Terekhov, K. Zavertkin, A. Ovinnikov, E. Likhobabin, V. Vityazev
{"title":"基于OpenCL的LLR BP解码仿真多核灵活并行实现","authors":"Igor Volkov, A. Kharin, Aleksei Dryakhlov, Evgeny Mirokhin, Konstantin Terekhov, K. Zavertkin, A. Ovinnikov, E. Likhobabin, V. Vityazev","doi":"10.1109/TELFOR.2017.8249334","DOIUrl":null,"url":null,"abstract":"In this paper we explore acceleration of the logarithmic likelihood ratio (LLR) belief propagation (BP) algorithm for LDPC codes decoding simulation, using parallel computation on graphics processing units (GPUs) with OpenCL technology. The proposed parallel implementation of the LLR BP algorithm includes parallel version of all decoding steps: decoder initialization, check and variable nodes update, a posteriori LLR calculation and decoding termination check. Decoder throughput was measured by simulating data transmission system with LDPC coding for DVB-T2/S2 (64800, 32400) and PEG (1008, 504) codes.","PeriodicalId":422501,"journal":{"name":"2017 25th Telecommunication Forum (TELFOR)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Flexible parallel implementation of LLR BP decoding simulation on multicores using OpenCL\",\"authors\":\"Igor Volkov, A. Kharin, Aleksei Dryakhlov, Evgeny Mirokhin, Konstantin Terekhov, K. Zavertkin, A. Ovinnikov, E. Likhobabin, V. Vityazev\",\"doi\":\"10.1109/TELFOR.2017.8249334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore acceleration of the logarithmic likelihood ratio (LLR) belief propagation (BP) algorithm for LDPC codes decoding simulation, using parallel computation on graphics processing units (GPUs) with OpenCL technology. The proposed parallel implementation of the LLR BP algorithm includes parallel version of all decoding steps: decoder initialization, check and variable nodes update, a posteriori LLR calculation and decoding termination check. Decoder throughput was measured by simulating data transmission system with LDPC coding for DVB-T2/S2 (64800, 32400) and PEG (1008, 504) codes.\",\"PeriodicalId\":422501,\"journal\":{\"name\":\"2017 25th Telecommunication Forum (TELFOR)\",\"volume\":\"218 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th Telecommunication Forum (TELFOR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELFOR.2017.8249334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Telecommunication Forum (TELFOR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELFOR.2017.8249334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flexible parallel implementation of LLR BP decoding simulation on multicores using OpenCL
In this paper we explore acceleration of the logarithmic likelihood ratio (LLR) belief propagation (BP) algorithm for LDPC codes decoding simulation, using parallel computation on graphics processing units (GPUs) with OpenCL technology. The proposed parallel implementation of the LLR BP algorithm includes parallel version of all decoding steps: decoder initialization, check and variable nodes update, a posteriori LLR calculation and decoding termination check. Decoder throughput was measured by simulating data transmission system with LDPC coding for DVB-T2/S2 (64800, 32400) and PEG (1008, 504) codes.