基于SVM分类的视觉火灾检测方法

Ha Dai Duong, Dao Thanh Tinh
{"title":"基于SVM分类的视觉火灾检测方法","authors":"Ha Dai Duong, Dao Thanh Tinh","doi":"10.1109/SOCPAR.2013.7054125","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new vision-based algorithm for fire detection problem. The algorithm consists of three main tasks: pixel-based processing to identify potential fire blobs, blob-based statistical feature extraction, and a support vector machine classifier. In pixel-based processing phase, five feature vectors based on RGB color space are used to classify a pixel by using a Bayes classifier to build a potential fire mask (PFM) of image. Next step, a potential fire blob mask (PFBM) is computed by using the difference between two consecutive PFM and a recover technique. In blob-based phase, for each potential blob in a potential fire blobs image (PFBI) an 7-feature vector are evaluated; this vector includes three statistical features of colour, four texture parameters and one shape roundness parameter. Finally, a SVM classifier is designed and trained for distinguish a potential fire blob are fire or fire-like object. Experimental results demonstrate the effectiveness and robustness of the proposed method.","PeriodicalId":315126,"journal":{"name":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"An efficient method for vision-based fire detection using SVM classification\",\"authors\":\"Ha Dai Duong, Dao Thanh Tinh\",\"doi\":\"10.1109/SOCPAR.2013.7054125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new vision-based algorithm for fire detection problem. The algorithm consists of three main tasks: pixel-based processing to identify potential fire blobs, blob-based statistical feature extraction, and a support vector machine classifier. In pixel-based processing phase, five feature vectors based on RGB color space are used to classify a pixel by using a Bayes classifier to build a potential fire mask (PFM) of image. Next step, a potential fire blob mask (PFBM) is computed by using the difference between two consecutive PFM and a recover technique. In blob-based phase, for each potential blob in a potential fire blobs image (PFBI) an 7-feature vector are evaluated; this vector includes three statistical features of colour, four texture parameters and one shape roundness parameter. Finally, a SVM classifier is designed and trained for distinguish a potential fire blob are fire or fire-like object. Experimental results demonstrate the effectiveness and robustness of the proposed method.\",\"PeriodicalId\":315126,\"journal\":{\"name\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2013.7054125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2013.7054125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种新的基于视觉的火灾探测算法。该算法包括三个主要任务:基于像素的处理以识别潜在的火点,基于点的统计特征提取,以及支持向量机分类器。在基于像素的处理阶段,利用基于RGB色彩空间的5个特征向量对像素进行分类,利用贝叶斯分类器构建图像的潜在火焰掩模(PFM)。下一步,利用两个连续的火焰团掩模的差值和恢复技术计算潜在的火焰团掩模(PFBM)。在基于斑点的阶段,对潜在火斑图像(PFBI)中的每个潜在斑点进行7个特征向量的评估;该向量包含3个颜色统计特征、4个纹理参数和1个形状圆度参数。最后,设计并训练了一个SVM分类器,用于区分潜在的火团是火或类火物体。实验结果证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient method for vision-based fire detection using SVM classification
In this paper, we present a new vision-based algorithm for fire detection problem. The algorithm consists of three main tasks: pixel-based processing to identify potential fire blobs, blob-based statistical feature extraction, and a support vector machine classifier. In pixel-based processing phase, five feature vectors based on RGB color space are used to classify a pixel by using a Bayes classifier to build a potential fire mask (PFM) of image. Next step, a potential fire blob mask (PFBM) is computed by using the difference between two consecutive PFM and a recover technique. In blob-based phase, for each potential blob in a potential fire blobs image (PFBI) an 7-feature vector are evaluated; this vector includes three statistical features of colour, four texture parameters and one shape roundness parameter. Finally, a SVM classifier is designed and trained for distinguish a potential fire blob are fire or fire-like object. Experimental results demonstrate the effectiveness and robustness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信