Zp2上灰度映射的多项式表示

Lanlan Liu, Meng Zhou
{"title":"Zp2上灰度映射的多项式表示","authors":"Lanlan Liu, Meng Zhou","doi":"10.1109/ISI.2011.5984089","DOIUrl":null,"url":null,"abstract":"In this work we describe cyclic code on ℤ<inf>p2</inf> by polynomial representation, we also discuss polynomial representation of Nechaev permutation and the Gray and Nechaev-Gray maps. Then we extend Gerardo Vega and Jacques Wolfman's result in [1] on ℤ<inf>4</inf> to ℤ<inf>p2</inf> by polynomial representation of Gray and Nechaev-Gray maps. We proved that from a linear code ℤ<inf>p2</inf> of length n a linear cyclic code on ℤ<inf>p</inf> of length pn can be obtained using the polynomial representation of Gray and Nechaev-Gray maps on ℤ<inf>p</inf>. So our results are a generalization of the results in [1],[3],[4] where they only thought about the case of on ℤ<inf>4</inf>.","PeriodicalId":220165,"journal":{"name":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The polynomial representation of Gray map on Zp2\",\"authors\":\"Lanlan Liu, Meng Zhou\",\"doi\":\"10.1109/ISI.2011.5984089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we describe cyclic code on ℤ<inf>p2</inf> by polynomial representation, we also discuss polynomial representation of Nechaev permutation and the Gray and Nechaev-Gray maps. Then we extend Gerardo Vega and Jacques Wolfman's result in [1] on ℤ<inf>4</inf> to ℤ<inf>p2</inf> by polynomial representation of Gray and Nechaev-Gray maps. We proved that from a linear code ℤ<inf>p2</inf> of length n a linear cyclic code on ℤ<inf>p</inf> of length pn can be obtained using the polynomial representation of Gray and Nechaev-Gray maps on ℤ<inf>p</inf>. So our results are a generalization of the results in [1],[3],[4] where they only thought about the case of on ℤ<inf>4</inf>.\",\"PeriodicalId\":220165,\"journal\":{\"name\":\"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2011.5984089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2011 IEEE International Conference on Intelligence and Security Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2011.5984089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们用多项式表示法描述了在素数p2上的循环码,我们还讨论了Nechaev置换的多项式表示法以及Gray映射和Nechaev-Gray映射。然后通过Gray映射和Nechaev-Gray映射的多项式表示,将Gerardo Vega和Jacques Wolfman在[1]中关于l0 4的结果推广到l0 2。我们证明了在一个长度为n的线性码中,可以用多项式表示在一个长度为n的线性码中得到一个长度为pn的线性循环码。所以我们的结果是[1][3][4]中结果的推广,在[1][3][4]中他们只考虑了在4上的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The polynomial representation of Gray map on Zp2
In this work we describe cyclic code on ℤp2 by polynomial representation, we also discuss polynomial representation of Nechaev permutation and the Gray and Nechaev-Gray maps. Then we extend Gerardo Vega and Jacques Wolfman's result in [1] on ℤ4 to ℤp2 by polynomial representation of Gray and Nechaev-Gray maps. We proved that from a linear code ℤp2 of length n a linear cyclic code on ℤp of length pn can be obtained using the polynomial representation of Gray and Nechaev-Gray maps on ℤp. So our results are a generalization of the results in [1],[3],[4] where they only thought about the case of on ℤ4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信