{"title":"二维准光功率分路器的数值衍射合成","authors":"A.A. Nosich, Y. Gandel, T. Magath, A. Altintas","doi":"10.1109/APS.2007.4396406","DOIUrl":null,"url":null,"abstract":"A new diffraction synthesis method is proposed for computing quasioptical 2-D reflector beam splitters in the E-polarization case. It is a combination of a numerical gradient (NG) optimization and an efficient analysis method based on singular integral equations (SIEs) which are discretized using a fast and accurate numerical Nystrom-type method of discrete singularities (MDS). The results of design are shown for a 40-quasioptical power splitter obtained from an offset parabolic reflector fed by in-focus beam source.","PeriodicalId":117975,"journal":{"name":"2007 IEEE Antennas and Propagation Society International Symposium","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical diffraction synthesis of 2-D quasioptical power splitter\",\"authors\":\"A.A. Nosich, Y. Gandel, T. Magath, A. Altintas\",\"doi\":\"10.1109/APS.2007.4396406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new diffraction synthesis method is proposed for computing quasioptical 2-D reflector beam splitters in the E-polarization case. It is a combination of a numerical gradient (NG) optimization and an efficient analysis method based on singular integral equations (SIEs) which are discretized using a fast and accurate numerical Nystrom-type method of discrete singularities (MDS). The results of design are shown for a 40-quasioptical power splitter obtained from an offset parabolic reflector fed by in-focus beam source.\",\"PeriodicalId\":117975,\"journal\":{\"name\":\"2007 IEEE Antennas and Propagation Society International Symposium\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Antennas and Propagation Society International Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2007.4396406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Antennas and Propagation Society International Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2007.4396406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Numerical diffraction synthesis of 2-D quasioptical power splitter
A new diffraction synthesis method is proposed for computing quasioptical 2-D reflector beam splitters in the E-polarization case. It is a combination of a numerical gradient (NG) optimization and an efficient analysis method based on singular integral equations (SIEs) which are discretized using a fast and accurate numerical Nystrom-type method of discrete singularities (MDS). The results of design are shown for a 40-quasioptical power splitter obtained from an offset parabolic reflector fed by in-focus beam source.