基于屏障函数的自适应扭转控制器

Hussein Obeid, L. Fridman, S. Laghrouche, M. Harmouche
{"title":"基于屏障函数的自适应扭转控制器","authors":"Hussein Obeid, L. Fridman, S. Laghrouche, M. Harmouche","doi":"10.1109/VSS.2018.8460272","DOIUrl":null,"url":null,"abstract":"A novel adaptive twisting controller strategy is designed for the case of second order disturbed systems whose disturbance is bounded with unknown boundary. This strategy consists in using a Barrier Function to adapt the control gain. This barrier strategy can ensure the convergence of the Lyapunov function, and maintain it in some predefined neighborhood of zero. This barrier strategy also has two main advantages: it does not require any information about the upper bound of disturbance, and does not overestimate the control gain.","PeriodicalId":127777,"journal":{"name":"2018 15th International Workshop on Variable Structure Systems (VSS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Barrier Function-Based Adaptive Twisting Controller\",\"authors\":\"Hussein Obeid, L. Fridman, S. Laghrouche, M. Harmouche\",\"doi\":\"10.1109/VSS.2018.8460272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel adaptive twisting controller strategy is designed for the case of second order disturbed systems whose disturbance is bounded with unknown boundary. This strategy consists in using a Barrier Function to adapt the control gain. This barrier strategy can ensure the convergence of the Lyapunov function, and maintain it in some predefined neighborhood of zero. This barrier strategy also has two main advantages: it does not require any information about the upper bound of disturbance, and does not overestimate the control gain.\",\"PeriodicalId\":127777,\"journal\":{\"name\":\"2018 15th International Workshop on Variable Structure Systems (VSS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Workshop on Variable Structure Systems (VSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VSS.2018.8460272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Workshop on Variable Structure Systems (VSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VSS.2018.8460272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

针对扰动以未知边界为界的二阶扰动系统,设计了一种新的自适应扭转控制策略。该策略包括使用势垒函数来调整控制增益。这种屏障策略可以保证Lyapunov函数的收敛性,并使其保持在零的预定义邻域内。这种屏障策略也有两个主要优点:它不需要任何关于干扰上界的信息,并且不会高估控制增益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Barrier Function-Based Adaptive Twisting Controller
A novel adaptive twisting controller strategy is designed for the case of second order disturbed systems whose disturbance is bounded with unknown boundary. This strategy consists in using a Barrier Function to adapt the control gain. This barrier strategy can ensure the convergence of the Lyapunov function, and maintain it in some predefined neighborhood of zero. This barrier strategy also has two main advantages: it does not require any information about the upper bound of disturbance, and does not overestimate the control gain.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信