非度量生物聚类

G. Becker, M. Potts
{"title":"非度量生物聚类","authors":"G. Becker, M. Potts","doi":"10.1109/BCC.2007.4430535","DOIUrl":null,"url":null,"abstract":"The goal of this research is to demonstrate how a non-metric clustering technique can be used to effectively reduce the search time for finding matches among biometric templates. Some biometric modalities (such as fingerprint) have proven to not cluster effectively with traditional clustering techniques. Without clustering, identification requires an expensive exhaustive search. This research explores the effectiveness of a novel clustering technique using false matches in a non-metric space. False matches are typically undesirable false positive errors that increase with gallery size. This clustering approach uses these false matches as references for clustering in non-metric similarity space. Searches can then be restricted to only those clusters that claim the probe as a member.","PeriodicalId":389417,"journal":{"name":"2007 Biometrics Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Non-Metric Biometric Clustering\",\"authors\":\"G. Becker, M. Potts\",\"doi\":\"10.1109/BCC.2007.4430535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this research is to demonstrate how a non-metric clustering technique can be used to effectively reduce the search time for finding matches among biometric templates. Some biometric modalities (such as fingerprint) have proven to not cluster effectively with traditional clustering techniques. Without clustering, identification requires an expensive exhaustive search. This research explores the effectiveness of a novel clustering technique using false matches in a non-metric space. False matches are typically undesirable false positive errors that increase with gallery size. This clustering approach uses these false matches as references for clustering in non-metric similarity space. Searches can then be restricted to only those clusters that claim the probe as a member.\",\"PeriodicalId\":389417,\"journal\":{\"name\":\"2007 Biometrics Symposium\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Biometrics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCC.2007.4430535\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Biometrics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCC.2007.4430535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本研究的目的是演示如何使用非度量聚类技术来有效地减少查找生物特征模板之间匹配的搜索时间。一些生物识别模式(如指纹)已被证明不能有效地聚类与传统的聚类技术。没有聚类,识别需要昂贵的穷举搜索。本研究探讨了一种在非度量空间中使用虚假匹配的新型聚类技术的有效性。假匹配通常是不希望出现的误报错误,它会随着库的大小而增加。这种聚类方法利用这些错误匹配作为参考,在非度量相似空间中进行聚类。然后,可以将搜索限制在那些声称该探针是其成员的集群中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Metric Biometric Clustering
The goal of this research is to demonstrate how a non-metric clustering technique can be used to effectively reduce the search time for finding matches among biometric templates. Some biometric modalities (such as fingerprint) have proven to not cluster effectively with traditional clustering techniques. Without clustering, identification requires an expensive exhaustive search. This research explores the effectiveness of a novel clustering technique using false matches in a non-metric space. False matches are typically undesirable false positive errors that increase with gallery size. This clustering approach uses these false matches as references for clustering in non-metric similarity space. Searches can then be restricted to only those clusters that claim the probe as a member.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信