Dingqi Yang, Daqing Zhang, Bingqing Qu, P. Cudré-Mauroux
{"title":"PrivCheck:为个性化的基于位置的服务提供隐私保护的签到数据发布","authors":"Dingqi Yang, Daqing Zhang, Bingqing Qu, P. Cudré-Mauroux","doi":"10.1145/2971648.2971685","DOIUrl":null,"url":null,"abstract":"With the widespread adoption of smartphones, we have observed an increasing popularity of Location-Based Services (LBSs) in the past decade. To improve user experience, LBSs often provide personalized recommendations to users by mining their activity (i.e., check-in) data from location-based social networks. However, releasing user check-in data makes users vulnerable to inference attacks, as private data (e.g., gender) can often be inferred from the users' check-in data. In this paper, we propose PrivCheck, a customizable and continuous privacy-preserving check-in data publishing framework providing users with continuous privacy protection against inference attacks. The key idea of PrivCheck is to obfuscate user check-in data such that the privacy leakage of user-specified private data is minimized under a given data distortion budget, which ensures the utility of the obfuscated data to empower personalized LBSs. Since users often give LBS providers access to both their historical check-in data and future check-in streams, we develop two data obfuscation methods for historical and online check-in publishing, respectively. An empirical evaluation on two real-world datasets shows that our framework can efficiently provide effective and continuous protection of user-specified private data, while still preserving the utility of the obfuscated data for personalized LBSs.","PeriodicalId":303792,"journal":{"name":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"PrivCheck: privacy-preserving check-in data publishing for personalized location based services\",\"authors\":\"Dingqi Yang, Daqing Zhang, Bingqing Qu, P. Cudré-Mauroux\",\"doi\":\"10.1145/2971648.2971685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the widespread adoption of smartphones, we have observed an increasing popularity of Location-Based Services (LBSs) in the past decade. To improve user experience, LBSs often provide personalized recommendations to users by mining their activity (i.e., check-in) data from location-based social networks. However, releasing user check-in data makes users vulnerable to inference attacks, as private data (e.g., gender) can often be inferred from the users' check-in data. In this paper, we propose PrivCheck, a customizable and continuous privacy-preserving check-in data publishing framework providing users with continuous privacy protection against inference attacks. The key idea of PrivCheck is to obfuscate user check-in data such that the privacy leakage of user-specified private data is minimized under a given data distortion budget, which ensures the utility of the obfuscated data to empower personalized LBSs. Since users often give LBS providers access to both their historical check-in data and future check-in streams, we develop two data obfuscation methods for historical and online check-in publishing, respectively. An empirical evaluation on two real-world datasets shows that our framework can efficiently provide effective and continuous protection of user-specified private data, while still preserving the utility of the obfuscated data for personalized LBSs.\",\"PeriodicalId\":303792,\"journal\":{\"name\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2971648.2971685\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2971648.2971685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
PrivCheck: privacy-preserving check-in data publishing for personalized location based services
With the widespread adoption of smartphones, we have observed an increasing popularity of Location-Based Services (LBSs) in the past decade. To improve user experience, LBSs often provide personalized recommendations to users by mining their activity (i.e., check-in) data from location-based social networks. However, releasing user check-in data makes users vulnerable to inference attacks, as private data (e.g., gender) can often be inferred from the users' check-in data. In this paper, we propose PrivCheck, a customizable and continuous privacy-preserving check-in data publishing framework providing users with continuous privacy protection against inference attacks. The key idea of PrivCheck is to obfuscate user check-in data such that the privacy leakage of user-specified private data is minimized under a given data distortion budget, which ensures the utility of the obfuscated data to empower personalized LBSs. Since users often give LBS providers access to both their historical check-in data and future check-in streams, we develop two data obfuscation methods for historical and online check-in publishing, respectively. An empirical evaluation on two real-world datasets shows that our framework can efficiently provide effective and continuous protection of user-specified private data, while still preserving the utility of the obfuscated data for personalized LBSs.