质量流量计(T,p)-/spl rho/表的建模技术

Han Jian-guo, Wu You-Hua, Liu Jiu-Xi
{"title":"质量流量计(T,p)-/spl rho/表的建模技术","authors":"Han Jian-guo, Wu You-Hua, Liu Jiu-Xi","doi":"10.1109/SICE.2000.889659","DOIUrl":null,"url":null,"abstract":"A method based on the training technology of a fuzzy inference adaptive artificial neural network and nonlinear least-square (linear in structure) system identification technology for modeling the (T,P)-/spl rho/ table for a mass flow-meter is introduced. The model has several advantages such as saving calculation workload and storage space, having essential filterability. Thus the method is an effective help for the current development of high-degree integration technology of measuring and instrumentation.","PeriodicalId":254956,"journal":{"name":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling technology for (T,p)-/spl rho/ table in mass flow-meter\",\"authors\":\"Han Jian-guo, Wu You-Hua, Liu Jiu-Xi\",\"doi\":\"10.1109/SICE.2000.889659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method based on the training technology of a fuzzy inference adaptive artificial neural network and nonlinear least-square (linear in structure) system identification technology for modeling the (T,P)-/spl rho/ table for a mass flow-meter is introduced. The model has several advantages such as saving calculation workload and storage space, having essential filterability. Thus the method is an effective help for the current development of high-degree integration technology of measuring and instrumentation.\",\"PeriodicalId\":254956,\"journal\":{\"name\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SICE.2000.889659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE 2000. Proceedings of the 39th SICE Annual Conference. International Session Papers (IEEE Cat. No.00TH8545)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.2000.889659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种基于模糊推理自适应人工神经网络训练技术和非线性最小二乘(线性结构)系统辨识技术的质量流量计(T,P)-/spl rho/表建模方法。该模型具有节省计算量和存储空间、具有良好的可过滤性等优点。因此,该方法为当前测量仪器高度集成技术的发展提供了有效的帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling technology for (T,p)-/spl rho/ table in mass flow-meter
A method based on the training technology of a fuzzy inference adaptive artificial neural network and nonlinear least-square (linear in structure) system identification technology for modeling the (T,P)-/spl rho/ table for a mass flow-meter is introduced. The model has several advantages such as saving calculation workload and storage space, having essential filterability. Thus the method is an effective help for the current development of high-degree integration technology of measuring and instrumentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信