一种用于黄曲霉毒素快速定量检测的新型蒙脱石-聚合物纳米复合材料微带传感器

He Hu, Jun Zou, Youjun Deng
{"title":"一种用于黄曲霉毒素快速定量检测的新型蒙脱石-聚合物纳米复合材料微带传感器","authors":"He Hu, Jun Zou, Youjun Deng","doi":"10.1109/ICSENS.2013.6688585","DOIUrl":null,"url":null,"abstract":"This paper reports the development of a novel smectite-polymer nanocomposite (SPN) microstrip sensor for both rapid quantification and long-term monitoring of aflatoxins. The smectite was modified with Ba2002B; cation exchange to improve its aflatoxin adsorption. SPN thin-films were synthesized on silicon substrates via layer-by-layer self-assembly. SPN microstrip arrays were patterned on glass substrates using stencil masks and enclosed in a microfluidic channel. This reduces the diffusion length and the adsorption time of aflatoxins, thereby resulting in fast response time (<; 10 min). A simple fluorometric quantification of aflatoxin concentration based on incident intensity modulation was developed to eliminate the need of a sophisticated fluorometer. A low detection limit of 6.09 ppb and a wide linear range of 5~80 ppb for aflatoxin B1 have been achieved.","PeriodicalId":258260,"journal":{"name":"2013 IEEE SENSORS","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel smectite-polymer nanocomposite (SPN) microstrip sensor for rapid quantitative detection of aflatoxins\",\"authors\":\"He Hu, Jun Zou, Youjun Deng\",\"doi\":\"10.1109/ICSENS.2013.6688585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the development of a novel smectite-polymer nanocomposite (SPN) microstrip sensor for both rapid quantification and long-term monitoring of aflatoxins. The smectite was modified with Ba2002B; cation exchange to improve its aflatoxin adsorption. SPN thin-films were synthesized on silicon substrates via layer-by-layer self-assembly. SPN microstrip arrays were patterned on glass substrates using stencil masks and enclosed in a microfluidic channel. This reduces the diffusion length and the adsorption time of aflatoxins, thereby resulting in fast response time (<; 10 min). A simple fluorometric quantification of aflatoxin concentration based on incident intensity modulation was developed to eliminate the need of a sophisticated fluorometer. A low detection limit of 6.09 ppb and a wide linear range of 5~80 ppb for aflatoxin B1 have been achieved.\",\"PeriodicalId\":258260,\"journal\":{\"name\":\"2013 IEEE SENSORS\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2013.6688585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2013.6688585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文报道了一种用于黄曲霉毒素快速定量和长期监测的新型蒙脱石-聚合物纳米复合材料(SPN)微带传感器的研制。用Ba2002B对蒙脱石进行改性;阳离子交换提高其对黄曲霉毒素的吸附。采用逐层自组装的方法在硅衬底上合成了SPN薄膜。SPN微带阵列采用模板掩模在玻璃基板上进行图图化,并封闭在微流控通道中。这减少了黄曲霉毒素的扩散长度和吸附时间,从而获得快速的响应时间(<;10分钟)。基于入射强度调制的黄曲霉毒素浓度的简单荧光定量被开发,以消除需要一个复杂的荧光计。黄曲霉毒素B1的检出限低至6.09 ppb,线性范围宽至5~80 ppb。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel smectite-polymer nanocomposite (SPN) microstrip sensor for rapid quantitative detection of aflatoxins
This paper reports the development of a novel smectite-polymer nanocomposite (SPN) microstrip sensor for both rapid quantification and long-term monitoring of aflatoxins. The smectite was modified with Ba2002B; cation exchange to improve its aflatoxin adsorption. SPN thin-films were synthesized on silicon substrates via layer-by-layer self-assembly. SPN microstrip arrays were patterned on glass substrates using stencil masks and enclosed in a microfluidic channel. This reduces the diffusion length and the adsorption time of aflatoxins, thereby resulting in fast response time (<; 10 min). A simple fluorometric quantification of aflatoxin concentration based on incident intensity modulation was developed to eliminate the need of a sophisticated fluorometer. A low detection limit of 6.09 ppb and a wide linear range of 5~80 ppb for aflatoxin B1 have been achieved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信