C. Nafornita, A. Isar, Norbert Matanie, Cristian Caba
{"title":"解决一个大数据问题。单视复杂SAR图像去噪模拟器","authors":"C. Nafornita, A. Isar, Norbert Matanie, Cristian Caba","doi":"10.1109/ISSCS.2017.8034865","DOIUrl":null,"url":null,"abstract":"We here present a solution to solve a big data problem in the context of satellite image processing. We conceived a simulator for denoising Sentinel 1 SAR Single Look Complex images, by using block processing together with a method based on the Hurst parameter estimation in the wavelet domain. We compare our method with traditional denoising filters.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution of a big data problem. Simulator for denoising of Single Look Complex SAR images\",\"authors\":\"C. Nafornita, A. Isar, Norbert Matanie, Cristian Caba\",\"doi\":\"10.1109/ISSCS.2017.8034865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We here present a solution to solve a big data problem in the context of satellite image processing. We conceived a simulator for denoising Sentinel 1 SAR Single Look Complex images, by using block processing together with a method based on the Hurst parameter estimation in the wavelet domain. We compare our method with traditional denoising filters.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Solution of a big data problem. Simulator for denoising of Single Look Complex SAR images
We here present a solution to solve a big data problem in the context of satellite image processing. We conceived a simulator for denoising Sentinel 1 SAR Single Look Complex images, by using block processing together with a method based on the Hurst parameter estimation in the wavelet domain. We compare our method with traditional denoising filters.