解决一个大数据问题。单视复杂SAR图像去噪模拟器

C. Nafornita, A. Isar, Norbert Matanie, Cristian Caba
{"title":"解决一个大数据问题。单视复杂SAR图像去噪模拟器","authors":"C. Nafornita, A. Isar, Norbert Matanie, Cristian Caba","doi":"10.1109/ISSCS.2017.8034865","DOIUrl":null,"url":null,"abstract":"We here present a solution to solve a big data problem in the context of satellite image processing. We conceived a simulator for denoising Sentinel 1 SAR Single Look Complex images, by using block processing together with a method based on the Hurst parameter estimation in the wavelet domain. We compare our method with traditional denoising filters.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution of a big data problem. Simulator for denoising of Single Look Complex SAR images\",\"authors\":\"C. Nafornita, A. Isar, Norbert Matanie, Cristian Caba\",\"doi\":\"10.1109/ISSCS.2017.8034865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We here present a solution to solve a big data problem in the context of satellite image processing. We conceived a simulator for denoising Sentinel 1 SAR Single Look Complex images, by using block processing together with a method based on the Hurst parameter estimation in the wavelet domain. We compare our method with traditional denoising filters.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在此,我们提出了一个解决卫星图像处理背景下的大数据问题的方案。采用分块处理和基于小波域Hurst参数估计的方法,设计了Sentinel 1 SAR单目复杂图像去噪模拟器。我们将该方法与传统的去噪滤波器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of a big data problem. Simulator for denoising of Single Look Complex SAR images
We here present a solution to solve a big data problem in the context of satellite image processing. We conceived a simulator for denoising Sentinel 1 SAR Single Look Complex images, by using block processing together with a method based on the Hurst parameter estimation in the wavelet domain. We compare our method with traditional denoising filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信